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Stimulus Sampling T heory

¢ Stimulus sampling theory is concerned with providing a mathematical
language in which we can state assumptions about learning and per-
formance in relation to stimulus variables. A special advantage of the
formulations to be discussed is that their mathematical properties permit
application of the simple and elegant theory of Markov chains (Feller,
1957; Kemeny, Snell, & Thompson, 1957; Kemeny & Snell, 1959) to

* the tasks of deriving theorems and generating statistical tests of the
agreement between assumptions and data. This branch of learning theory
has developed in close interaction with certain types of experimental
analyses; consequently it is both natural and convenient to organize this
presentation around the theoretical treatments of a few standard reference
experiments.

At the level of experimental interpretation most contemporary learning
theories utilize a common conceptualization of the learning situation
in terms of stimulus, response, and reinforcement. The stimulus term of
this triumvirate refers to the environmental situation with respect to which
behavior is being observed, the response term to the class of observable
behaviors whose measurable properties change in some orderly fashion
during learning, and the reinforcement term to the experimental operations
or events believed to be critical in producing learning. Thus, in a simple
paired-associate experiment concerned with the learning of English
equivalents to Russian words, the stimulus might consist in presentation
of the printed Russian word alone, the response measure in the relative
frequency with which the learner is able to supply the English equivalent
from memory, and reinforcement in paired presentation of the stimulus
and response words.

In other chapters of this Handbook, and in the general literature on
learning theory, the reader will encounter the notions of sets of responses
and sets of reinforcing events. In the present chapter mathematical sets are
used to represent certain aspects of the stimulus situation. It should be
emphasized from the outset, however, that the mathematical models to be
considered are somewhat abstract and that the empirical interpretations of
stimulus sets and their elements are not to be considered fixed and immu-
table. Two main types of interpretations are discussed: in one the
empirical correspondent of a stimulus element is the full pattern of
stimulation effective on a given trial; in the other the correspondent of an
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I24 STIMULUS SAMPLING THEORY

element is a component, or aspect, of the full pattern of stimulation. In
the first, we speak of “pattern models” and in the second, of “component
models” (Estes, 1959b).

There are a number of ways in which characteristics of the stimulus
situation are known to affect learning and transfer. Rates and limits of
conditioning and learning generally depend on stimulus magnitude, or
intensity, and on stimulus variability from trial to trial. Retention and
transfer of learning depend on the similarity, or communality, between
the stimulus situations obtaining during training and during the test for
retention or transfer. These aspects of the stimulus situation can be
given direct and natural representations in terms of mathematical sets and
relations between sets. :

The basic notion common to all stimulus sampling theories is the
conceptualization of the totality of stimulus conditions that may be
effective during the course of an experiment in terms of a mathematical
set. Although it is not a necessary restriction, it is convenient for mathe-
matical reasons to deal only with finite sets, and this limitation is assumed
throughout our presentation. Stimulus variability is taken into account
by assuming that of the total population of stimuli available in an experi-
mental situation generally only a part actually affects the subject on any
one trial. Translating this idea into the terms of a stimulus sampling
model, we may represent the total population by a set of “stimulus ele-
ments” and the stimulation effective on any one trial by a sample from
this set. Many of the simple mathematical properties of the models to be
discussed arise from the assumption that these trial samples are drawn
randomly from the population, with all samples of a given size having
equal probabilities. Although it is sometimes convenient and suggestive
to speak in such terms, we should not assume that the stimulus elements
are to be identified with any simple neurophysiological unit, as, for
example, receptor cells. At the present stage of theory construction we
mean to assume only that certain properties of the set-theoretical model
represent certain properties of the process of stimulation. If these assump-
tions prove to be sufficiently well substantiated when the model is tested
against behavioral data, then it will be in order to look for neurophysio-
logical variables that might underlie the correspondences. Just as the
ratio of sample size to population size is a natural way of representing
stimulus variability, sample size per se may be taken as a correspondent of
stimulus intensity, and the amount of overlap (i.e., proportion of common
elements) between two stimulus sets may be taken to represent the degree
of communality between two stimulus situations.

Our concern in this chapter is not to survey the rapidly developing area
of stimulus sampling theory but simply to present some of the fundamental
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mathematical techniques and illustrate their applications. For general
background the reader is referred to Bush (1960), Bush & Estes (1959),
Estes (1959a, 1962), and Suppes & Atkinson (1960). We shall consider
first, and in some detail, the simplest of all learning models—the pattern
model for simple learning. In this model the population of available
stimuli is assumed to comprise a set of distinct stimulus patterns, exactly
one of which is sampled on each trial. In the important special case
of the one-element model it is assumed that there is only one such pattern
and that it recurs intact at the beginning of each experimental trial.
Granting that the one-clement model represents a radical idealization
of even the most simplified conditioning situations, we shall find that
it is worthy of study not only for expositional purposes but also for its
value as an analytic device in relation to certain types of learning data.
After a relatively thorough treatment of pattern models for simple acquisi-
tion and for learning under probabilistic reinforcement schedules, we shall
take up more briefly the conceptualization of generalization and transfer;
component models in which the patterns of stimulation effective on
individual trials are treated not as distinct elements but as overlapping
samples from a common population; and, finally, some examples of the
more complex multiple-process models that are becoming increasingly
important in the analysis of discrimination learning, concept formation,
and related phenomena.

1. ONE-ELEMENT MODELS

We begin by considering some one-element models that are special cases
of the more general theory. These examples are especially simple mathe-
matically and provide us with the opportunity to develop some mathe-
matical tools that will be necessary in later discussions. Application of
these models is appropriate when the stimulus situation is sufficiently stable
from trial to trial that it may be theoretically represented (to a good
approximation) by a single stimulus element which is sampled with proba-
bility 1 on each trial. At the start of a trial the element is in one of several
possible conditioning states; it may or may not remain in this conditioning
state, depending on the reinforcing event for that trial. In the first part of
this section we consider a model for paired-associate learning. In the
second part we consider a model for a two-choice learning situation
involving a probabilistic reinforcement schedule. The models generate
some predictions that are undoubtedly incorrect, except possibly under
ideal experimental conditions; nevertheless, they provide a useful intro-
duction to more general cases which we pursue in Section 2.
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1.1 Learning of a Single Stimulus-Response Association

Imagine the simplest possible learning situation. A single stimulus
pattern, S, is to be presented on each of a series of trials and each trial is
to terminate with reinforcement of some designated response, the “correct
response” in this situation. According to stimulus sampling theory,
learning occurs in an all-or-none fashion with respect to S.

1. If the correct response is not originally conditioned to (“‘connected
to”) S, then, until learning occurs, the probability of the correct response is
zero.

2. There is a fixed probability ¢ that the reinforced response will become
conditioned to S on any trial.

3. Once conditioned to S, the correct response occurs with probability
1 on every subsequent trial.

These assumptions constitute the simplest case of the ‘“one-element
pattern model.” Learning situations that completely meet the specifica-
tions laid down above are as unlikely to be realized in psychological
experiments as perfect vacuums or frictionless planes in the physics
laboratory. However, reasonable approximations to these conditions can
be attained. The requirement that the same stimulus pattern be reproduced
on each trial is probably fairly well met in the standard paired-associate
experiment with human subjects. In one such experiment, conducted in
the laboratory of one of the writers (W. K. E.), the stimulus member of
each item was a trigram and the correct response an English word, for
example,

S R .

xvk house
On a reinforced trial the stimulus and response members were exposed
together, as shown. Then, after several such items had received a single
reinforcement, each of the stimuli was presented alone, the subject being
instructed to give the correct response from memory, if he could. Then
each item was given a second reinforcement, followed by a second test,
and so on.

According to the assumptions of the one-clement pattern model, a
subject should be expected to make an incorrect response on each test
with a given stimulus until learning occurs, then a correct response on
every subsequent trial; if we represent an error by a 1 and a correct
response by a 0, the protocol for an individual item over a series of trials
should, then, consist in a sequence of 0’s preceded in most cases by a
sequence of 1’s. Actual protocols for several subjects are shown below:
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The first seven of these correspond perfectly to the idealized theoretical
picture; the last two deviate slightly. The proportion of “fits and
“misfits” in this sample is about the same as in the full set of 80 cases from
which the sample was taken. The occasional lapses, that is, errors follow-
ing correct responses, may be symptomatic of a forgetting process that
should be incorporated into the theory, or they may be simply the result
of minor uncontrolled variables in the experimental situation which are
best ignored for theoretical purposes. Without judging this issue, we may
conclude that the simple one-element model at least merits further study.

Before we can make quantitative predictions we need to know the value
of the conditioning parameter c¢. Statistical learning theory includes no
formal axioms that specify precisely what variables determine the value of
¢, but on the basis of considerable experience we can safely assume that
this parameter will vary with characteristics of the populations of subjects
and items represented in a particular experiment. An estimate of the value
of ¢ for the experiment under consideration is easy to come by. In the
full set of 80 cases (40 subjects, each tested on two items) the proportion
of correct responses on the test given after a single reinforcement was
0.39. According to the model, the probability is ¢ that a reinforced re-
sponse will become conditioned to its paired stimulus; consequently ¢
is the expected proportion of successful conditionings out of 80 cases, and
therefore the expected proportion of correct responses on the subsequent
test. Thus we may simply take the observed proportion 0.39 as an estimate
of c.

In order to test the model, we need now to derive theoretical expressions
for other aspects of the data. Suppose we consider the sequences of correct
and incorrect responses, 000, 001, etc., on the first three trials. According
to the model, a correct response should never be followed by an error, so
the probability of the sequence 000 is simply ¢, and the probabilities of
001, 010, 011, and 101 are all zero. To obtain an error on the first trial
followed by a correct response on the second, conditioning must fail on the
first reinforcement but occur on the second, and this joint event has
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probability (1 — ¢)c. Similarly, the probability that the first correct
response will occur on the third trial is given by (1 — ¢)%c and the proba-
bility of no correct response in three trials by (I — c)®. Substituting the
estimate 0.39 for ¢ in each of these expressions, we obtain the predicted

Table 1 Observed and Predicted (One-Element Model) Values
for Response Sequences Over First Three Trials of a Paired-
Associate Experiment

Observed Theoretical
Sequence* Proportions Proportions
000 0.36 0.39
001 0.02 0
019 0.01 0
011 0 0
100 0.27 0.24
101 0 0
110 0.11 0.14
111 0.23 0.23

* 0 = correct response
1 = error

values which are compared with the corresponding empirical values for
this experiment in Table 1. The correspondences are seen to be about as
close as could be expected with proportions based on80response sequences.

1.2 Paired-Associate Learning

In order to apply the one-element model to paired-associate experiments
involving fixed lists of items, it is necessary to adjust the “boundary
conditions” appropriately. Consider, for example, an experiment reported
by Estes, Hopkins, and Crothers (1960). The task assigned their subjects
was to learn associations between the numbers 1 through 8, serving as
responses, and eight consonant trigrams, serving as stimuli. Each subject
was given two practice trials and two test trials. On the first practice trial
the eight syllable-number pairs were exhibited singly in a random order.
Then a test was given, the syllables alone being presented singly in a new
random order and the subjects attempting to respond to each syllable with
the correct number. Four of the syllable-number pairs were presented on a
second practice trial, and all eight syllables were included in a final test
trial.
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In writing an expression for the probability of a correct response on the
first test in this experiment, we must take account of the fact that, after
the first practice trial, the subjects knew that the responses were the
numbers 1 to 8 and were in a position to guess at the correct answers when
shown syllables that they had not yet learned. The minimum probability
of achieving a correct response to an unlearned item by guessing would be
1. Thus we would have for p,, the probability of a correct response on the
first test,

1—c¢
p0=c+ 8 s

that is, the probability c that the correct association was formed plus the
probability (1 — ¢)/8 that the association was not formed but the correct
response was achieved by guessing. Setting this expression equal to the
observed proportion of correct responses on the first trial for the twice
reinforced items, we readily obtain an estimate of ¢ for these experimental
conditions,
0.404 = ¢ + (1 — ¢)(0.125),
and so
¢ = 0.32.

Now we can proceed to derive expressions for the joint probabilities of
various combinations of correct and incorrect responses on the first
and second tests for the twice reinforced items. For the probability of
correct responses to a given item in both tests, we have

Poo = ¢ + (1 — ¢)(0.125)c + (1 — ¢)*(0.125)%

With probability ¢, conditioning occurs on the first reinforced trial, and
then correct responses necessarily occur on both tests; with probability
(1 — ¢)c(0.125), conditioning does not occur on the first reinforced trial
but does on the second, and a correct response is achieved by guessing on
the first test; with probability (1 — ¢)*0.125)?, conditioning occurs on
neither reinforced trial but correct responses are achieved by guessing
on both tests. Similarly, we obtain

Por = (1 — ¢)%(0.875)(0.125)

Pro = (1 — ¢)(0.875)[c + (1 — ¢)(0.125)]
and
= (1 — ¢)2(0.875)2

Substituting for ¢ in these expressions the estimate computed above, we
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arrive at the predicted values which we compare with the corresponding
observed values below.

Observed Predicted

Poo 0.35 0.35
Por 0.05 0.05
P1o 0.27 0.24
Pu 0.33 0.35

Although this comparison reveals some disparities, which we might hope
to reduce with a more elaborate theory, it is surprising, to the writers at
least, that the patterns of observed response proportions in both experi-
ments considered can be predicted as well as they are by such an extremely
simple model.

Ordinarily, experiments concerned with paired-associate learning are
not limited to a couple of trials, like those just considered, but continue
until the subjects meet some criterion of learning. Under these circum-
stances it is impractical to derive theoretical expressions for all possible
sequences of correct and incorrect responses. A reasonable goal, instead,
is to derive expressions for various statistics that can be conveniently
computed for the data of the standard experiment; examples of such
statistics are the mean and variance of errors per item, frequencies of runs
of errors or correct responses, and serial correlation of errors over trials with
any given lag. Bower (1961, 1962) carried out the first major analysis
of this type for the one-element model. We shall use some of his results to
illustrate application of the model to a full “learning-to-criterion” experi-
ment. Essential details of his experiment are as follows: a list of 10 items
was learned by 29 undergraduates to a criterion of two consecutive errorless
trials. The stimuli were different pairs of consonant letters and the
responses were the integers 1 and 2; each response was assigned as correct
to a randomly selected five items for each subject. A response was obtained
from the subject on each presentation of an item, and he was informed of
the correct answer following his response.

As in the preceding application, we shall assume that each item in the
list is to be represented theoretically by exactly one stimulus element,
which is sampled with probability 1 when the item is presented, and that
the correct response to that item is conditioned in an all-or-none fashion.
On trial n of the experiment an element is in one of two ‘“‘conditioning
states”: In state C the element is conditioned to the correct response;
in state C the element is not conditioned.

The response the subject makes depends on his conditioning state.



ONE-ELEMENT MODELS I3r

When the element is in state C, the correct response occurs with proba-
bility 1. The probability of the correct response when the element is in
state C depends on the experimental procedure. In Bower’s experiment
the subjects were told the  responses available to them and each occurred
equally often as the to-be-learned response. Therefore we may assume
that in the unconditioned state the probability of a correct response is
1/r, where r is the number of alternative responses.

The conditioning assumptions can readily be restated in terms of the
conditioning states:

1. On any reinforced trial, if the sampled element is in state C, it has
probability ¢ of going into state C.

2. The parameter c is fixed in value in a given experiment.

3. Transitions from state C to state C have probability zero.

We shall now derive some predictions from the model and compare
these with observed data. The data of particular interest will be a subject’s
sequence of correct and incorrect responses to a specific stimulus item over
trials. Similarly, in deriving results from the model we shall consider only
an isolated stimulus item and its related sequence of responses. However,
when we apply the model to data, we assume that all items in the list are
comparable, that is, all items have the same conditioning parameter
¢ and all items start out in the same conditioning state (C). Consequently
the response sequence associated with any given item is viewed as a sample
of size 1 from a population of sequences all generated by the same under-
lying process.

A feature of this model which makes it especially tractable for purposes
of deriving various statistics is the fact that the sequences of transitions
between states C and C constitute a Markov chain. This means that,
given the state on any one trial, we can specify the probability of each state
on the next trial without regard to the previous history. If we represent
by C, and C, the events that an item is in the conditioned or unconditioned
state, respectively, on trial n, and by ¢;; and ¢,, the probabilities of transi-
tions from state C to state C and from Cto C, respectively, the conditioning
assumptions lead directly to the relations?

g =Pr(C,4 l c) =1,

g = Pr(C,y I C—n) =6
2 See Feller (1957) for a discussion of conditional probabilities. In brief, if Hy, . .., Ha
are a set of mutually exclusive events of which one necessarily occurs, then any event 4
can occur only in conjunction with some H;,. Since the AH; are mutually exclusive,

their probabilities add. Applying the well-known theorem on compound probabilities,
we obtain Pr (4) = > Pr(4H,) = > Pr (4| H,) Pr (H,).
J J
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o=, %)

where Q is the matrix of one-step transition probabilities, the first row
and column referring to C and the second row and column to €. Now
the matrix of probabilities for transitions between any two states in »
trials is simply the nth power of Q, as may be verified by mathematical
induction (see, e.g., Kemeny, Snell, & Thompson, 1957, p. 327),

Q"= [1 _d-or - c)"]

Henceforth we shall assume that all stimulus elements are in state C at
the onset of the first trial of our experiment. Given that the state is C
on trial 1, the probability of being in state C at the start of trial # is
(I — ¢)*1, which goes to 0 as n becomes large, for ¢ > 0. Thus with
probability 1 the subject is eventually to be found in the conditioned state.

Next we prove some theorems about the observable sequence of correct
and incorrect responses in terms of the underlying sequence of unobserv-
able conditioning states. We define the response random variable

and

n

0 if a correct response occurred on trial 7,
1 if an error occurred on trial .

By our assumed response rule the probabilities of an error, given that
the subject is in the conditioned or unconditioned state, respectively, are

Pr(A,=1|C)=0
and

Pr(A,=1|C)=1-1.
r

To obtain the probability of an error on trial #, namely Pr (A, = 1),
we sum these conditional probabilities weighted by the probabilities of
being in the respective states:

Pr(A,=1)=Pr(A, =1|C,) Pr(C,) + Pr(A, = 1| C,) Pr (C,)
= (1 - 1)(1 — ot O
r

Consider next the infinite sum of the random variables A,, Ay A, ...
which we denote A; specifically,
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But
E(A) = X E(A,)
=>Pr(A,=1)
_— < - 1 — n—1
5(-Ya-a

n=1

_1=dam
==,

@

Thus the number of errors expected during the learning of any given item
is given by Eq. 2.

Equation 2 provides an easy method for estimating c. For any given
subject we can obtain his average number of errors over stimulus items,
equate this number to the right-hand side of Eq. 2 with r = 2, and solve
for c. We thereby obtain an estimate of ¢ for each subject, and intersubject
differences in learning are reflected in the variability of these estimates.
Bower, in analyzing his data, chose to assume that ¢ was the same for all
subjects; thus he set E(A) equal to the observed number of errors averaged
over both list items and subjects and obtained a single estimate of c.
This group estimate of ¢ simplifies the computations involved in generating
predictions. However, it has the disadvantage that a discrepancy between
observed and predicted values may arise as a consequence of assuming
equal ¢’s when, in fact, the theory is correct but ¢ varies from subject to
subject. Fortunately, Bower has obtained excellent agreement between
theory and observation using the group estimate of ¢ and, for the particular
conditions he investigated, any increase in precision that might be achieved
by individual estimates of ¢ does not seem crucial.

For the experiment described above, Bower reports 1.45 errors per
stimulus item averaged over all subjects. Equating E(A) in Eq. 2 to 1.45,
with r = 2, we obtain the estimate ¢ = 0.344. All predictions that we
derive from the model for this experiment will be based on this single
estimate of c. It should be remarked that the estimate of ¢ in terms of
Eq. 2 represents only one of many methods that could have been used.
The method one selects depends on the properties of the particular esti-
mator (e.g., whether the estimator is unbiased and efficient in relation to
other estimators). Parameter estimation is a theory in its own right, and
we shall not be able to discuss the many problems involved in the estima-
tion of learning parameters. The reader is referred to Suppes & Atkinson
(1960) for a discussion of various methods and their properties. Associated
with this topic is the problem of assessing the statistical agreement between
data and theory(i. e., the goodness-of-fit between predicted and observed
values) once parameters have been estimated. In our analysis of data
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in this chapter we offer no statistical evaluation of the predictions but
simply display the results for the reader’s inspection. Our reason is that
we present the data only to illustrate features of the theory and its applica-
tion; these results are not intended to provide a test of the model. How-
ever, in rigorous analyses of such models the problem of goodness-of-fit
is extremely important and needs careful consideration. Here again the
reader is referred to Suppes & Atkinson (1960) for a discussion of some of
the problems and possible statistical tests.

By using Eq. 1 with the estimate of ¢ obtained above we have generated
the predicted learning curve presented in Fig. 1. The fit is sufficiently close
that most of the predicted and observed points cannot be distinguished
on the scale of the graph.

As a basis for the derivation of other statistics of total errors, we require
an expression for the probability distribution of A. To obtain this, we
note first that the probability of no errors at all occurring during learning
is given by

c(%) Hl_c)e)zH'"'=§§o<1:c)i=r[1—(1c—c)/r]=€’

where b = ¢/[1 — (1 — ¢)/r]. This event may arise if a correct response
occurs by guessing on the first trial and conditioning occurs on the first
reinforcement, if a correct response occurs by guessing on the first two

0.5¢—

0.4

<
w

Pr {error)

o
I

0.1

—_
N
w
N
o —
o

.7 8 9 10 11 12 13
Trials

Fig. 1. The average probability of an error on trial # in Bower’s paired-
associate experiment.
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trials and conditioning occurs on the second reinforcement, and so on.
Similarly, the probability of no additional errors following an error on
any given trial is given by
l—c 1— c) ¢
c+ec =c
r Z ( r 1—-(1 - c)/r

To have exactly k errors, we must have a first error (if £ > 0), which has
probability 1 — b/r, k — 1additional errors, each of which has probability
1 — b, and then no more errors. Therefore the required probability
distribution is

Pr(A =0) =

~ o

(3)
Pr(A =k)= bl — bjr)(1 — b)*,  fork > 1.

Equation 3 can be applied to data directly to predict the form of the fre-
quency distribution of total errors. It may also be utilized in deriving,
for example, the variance of this distribution. Preliminary to computing
the variance, we need the expectation of AZ,

E(A?) =§ K% (r - b)(1 — byt

- b(r - b) S k(k — 1) + k(1 — b

r

—(- b)b( )z[k(k — 1)+ kI — b

where the second step is taken in order to facilitate the summation.
Using the familiar expression

0 k__l
kgo(l—b) b

for the sum of a geometric series, together with the relations

(1= b = —k(1 = b},

(1 — b)Yt = k(k — D)(1 — b)* %,

db2
and
2 d d (1 1
- —l—b"———— 1 —b)f= ——(—)=—~,
kEOdb( ) z( ) db\b b?
® & a2 (1 2
P et S0 L) 22
kzo dbz( ) db2 z( ) db*\b b
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we obtain

- 2

and

Var (&) = E(A%) — [E(A)]*
_p(r=0b\[21—b) 1 =P
_b( r)l: b +b2:| c
_ (1 _ 1)(20 — cr2+ r—1)

r c’r
_r=1DCc—cr+r—1)
e re
_(r=D(er+2c—2cr+r—1)
T re re
_(r— 1)[1 1 (2c — D — r):'
re re

= EQA)[1 + EA)1 — 20)]. 4

Inserting in Eq. 4 the estimates E(A) = 1.45 and ¢ = 0.344 from Bower’s
data, we obtain 1.44 for the predicted standard deviation of total errors,
which may be compared with the observed value of 1.37.

Another useful statistic of the error sequence is E(A,A,,,;); namely, the
expectation of the product of error random variables on trials # and # + k.
This quantity is related to the autocorrelation between errors on trials
n + k and trial n. By elementary probability theory,

E(AnAn+k) = E(A,x l A)E(A,)
=Pr(A,.=1 IA” =1)Pr(A, = 1).

But for an error to occur on trial n + k conditioning must have failed to
occur during the intervening k trials and the subject must have guessed
incorrectly on trial » + k. Hence
Pr(A,,=1]|A,=D)=(1— c)k(l - 1)

r
Substitution of this result into the preceding expression, along with the
result presented in Eq. 1, yields the following expression:

1

1)(1 — o — c)"_l(l _ —)

EA A = (1-1
T r

= (1 - %)2(1 — L, )
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A convenient statistic for comparison with data (directly related to the
average autocorrelation of errors with lag k, but easier to compute) is
obtained by summing the cross product of A, and A, over all trials.
We define ¢, as the mean of this random variable, where

¢ = S E(AuA,)
_ E(A)(1 — %)(1 — o, 6)

To be explicit, consider the following response protocol running in time
from left to right: 1101010010000. The observed values for ¢, are ¢; = 1,
¢y = 2, ¢y = 2, and so on.

The predictions for ¢y, ¢,, and ¢; computed from the ¢ estimate given
above were 0.479, 0.310, and 0.201. Bower’s observed values were 0.486,
0.292, and 0.187.

Next we consider the distribution of the number of errors between the
kth and (k + 1)st success. The methods to be used in deriving this result
are general and can be used to derive the distribution of errors between the
kth and (k + m)th success for any nonnegative integer m. The only limita-
tion is that the expressions become unwieldy as m increases. We shall
define J, as the random variable for the number of errors between the kth
and (k + 1)st success; its values are 0, 1,2, . ... An error following the
kth success can occur only if the kth success itself occurs as a result of
guessing; that is, the subject necessarily is in state C when the kth success
occurs. Letting g, denote the probability that the kth success occurs by
guessing, we can write the probability distribution

1 — agy, for i=0
Pr(J,=1)= . M
(1 — w)aig, for i>0,

where o = (I — ¢)[1 — (1/r)]. To obtain Pr(J, = 0), we note that 0
errors can occur in one of three ways: (1) the kth success occurs because
the subject is in state C (which has probability 1 — g;) and necessarily a
correct response occurs on the next trial; (2) the kth success occurs by
guessing, the subject remaining in state C and again guessing correctly on
the next trial [which has probability g,(1 — ¢)(1/r)]; or (3) the kth success
occurs by guessing but conditioning is effective on the trial (which
has probability gic). Thus Pr (J;=0)=1—g + gl — o/r) + g
=1 — ag,. The event of i errors (i > 0) between the kth and (k + 1)st
successes can occur in one of two ways: (1) the kthand (k + 1)st successes
occur by guessing {with probability g,(1 — ¢)™[1 — (1/N1/r)}, or (2)
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the kth success occurs by guessing and conditioning does not take place
until the trial immediately preceding the (k + 1)st success {with probability
&l — ¢)'[1 — (1/r)fc}. Hence

Pr(J, = i) = g (1 — C)H—l(l _ %)% + gl — c)f(1 _ 1)1}:

T
-ufi= Y- oo hu ]

= gl — ).
From Eq. 7 we may obtain the mean and variance of Ji, namely
E(J) =2 iPr(d, = i) = 28, (®)
i=0

and -«

Var () = 3 i* Pr(J, = i) — EJ,)?
=0

— agi(1 + o) _ *’g”
e N

%8k
Tl a0 — g ©)

In order to evaluate these quantities, we require an expression for g;.
Consider g,, the probability that the first success will occur by guessing.
It could occur in one of the following ways: (1) the subject guesses cor-
rectly on trial 1 (with probability 1/r); (2) the subject guesses incorrectly on
trial 1, conditioning does not occur, and the subject guesses successfully
on trial 2 {this joint event has probability [1 — (1/r)] (1 — ¢)(1/r)}; or (3)
conditioning does not occur on trials 1 and 2, and the subject guesses
incorrectly on both of these trials but guesses correctly on trial 3 {with
probability [1 — (1/r)]A(1 — ¢)¥(1/r)}, and so forth. Thus

o (S I
=(1—1a)r'

Now consider the probability that the kth success occurs by guessing for
k > 1. In order for this event to occur it must be the case that (1) the
(k — I)st success occurs by guessing, (2) conditioning fails to occur on the
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trial of the (k — 1)st success, and (3) since the subject is assumed to be in
state C on the trial following the (k — I)st success, the next correct
response occurs by guessing, which has probability g;. Hence

g = &ea(l — g
Solving this difference equation® we obtain

g = (1 —o)fg"
Finally, substituting the expression obtained for g, yields
_ (1 . C)Ic—l

(r —ar)®

We may now combine Eqs. 7 and 10, inserting our original estimate of
¢, to obtain predictions about the number of errors between the kth and
(k + 1)st success in Bower’s data. To illustrate, for k = 1, the predicted
mean is 0.361 and the observed value is 0.350.

To conclude our analysis of this model, we consider the probability
p,. that a response sequence to a stimulus item will exhibit the property
of no errors following the kth success. This event can occur in one of two
ways: (1) the kth success occurs when the subject is in state C (the proba-
bility of which is 1 — gy), or (2) the kth success occurs when the subject
is in state C and no errors occur on subsequent trials. Let b denote the
probability of no more errors following a correct guess. Then

Pr= (1 —gw+ gib
—1— gl —b). an

But the probability of no more errors following a successful guess is simply

(10)

4

1 L (1)
b=c+(—c=c+(1—0) (— ...
r r

c
«+c

Substituting this result for b into Eq. 11, along with our expression for
g, in Eq. 10, we obtain

ol — o)t

(@ + o) — ar)’
Observed and predicted values of p; for Bower’s experiment are shown in
Table 2.

3 The solution of this equation can quickly be obtained. Note that g, = g:(1 — g1 =
1 —og Similarly, g3 = g.(1 — og1; substituting the result for g., we obtain
=0 —0g’Q — g = (1 — ¢)%¢,® If we continue in this fashion, it will be
obvious that g, = (1 — ¢ k-l k,

pe=1 (12)
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We shall not pursue more consequences of this model.¢ The particular
results we have examined were selected because they illustrated funda-
mental features of the model and also introduced mathematical techniques
that will be needed later. In Bower’s paper more than 30 predictions of the
type presented here were tested, with results comparable to those exhibited
above. The goodness-of-fit of theory to data in these instances is quite

Table 2 Observed and Predicted Values for bx the Probability
of No Errors Following the £th Success

k Observed p, Predicted p,
0 0.255 0.256
1 0.628 0.636
2 0.812 0.822
3 0.869 0.912
4 0.928 0.957
5 0.963 0.979
6 0.973 0.990
7 0.990 0.995
8 0.990 0.997
9 0.993 0.998

10 0.996 0.999

11 1.000 1.000

(Interpret p, as the probability of no errors at all
during the course of learning).

representative of what we may now expect to obtain routinely in simple
learning experiments when experimental conditions have been appropri-
ately arranged to approximate the simplifying assumptions of the mathe-
matical model.

Concepts of the sort developed in this section can be extended to more
traditional types of verbal learning situations involving stimulus similarity,
meaningfulness, and the like. For example, Atkinson (1957) has presented
a model for rote serial learning which is based on similar ideas and deals

* Bower also has compared the one-element model with a comparable single-operator
linear model presented by Bush and Sternberg (1959). The linear model assumes that
the probability of an incorrect response on trial # is a fixed number P> Where p,.; =
(I — c)pn and p; = [1 — (1/r)]. The one-element model and the linear model generate
many identical predictions (e.g., mean learning curve), and it is necessary to look at
the finer structure of the data to differentiate models. Among the 20 possible compar-
isons Bower makes between the two models, he finds that the one-element model
comes closer to the data on 18.
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with such variables as intertrial interval, list length, and types of errors
(perseverative, anticipatory, or response-failure). Unfortunately, theoret-
ical analyses of this sort for traditional experimental routines often lead
to extremely complicated mathematical models with the result that only a
few consequences of the axioms can be derived. Stated differently, a set of
concepts may be general in terms of the range of situations to which it is
applicable; nevertheless, in order to provide rigorous and detailed tests
of these concepts, it is frequently necessary to contrive spscial experi-
mental routines in which the theoretical analyses generate tractable mathe-
matical systems.

1.3 Probabilistic Reinforcement Schedules

We shall now examine a one-element model for some simple two-choice
learning problems. The one-element model for this situation, as contrasted
with the paired-associate model, generates some predictions of behavior
that are quite unrealistic, and for this reason we defer an analysis of
experimental data until we consider comparable multi-element processes.
The reason for presenting the one-element model is that it represents a
convenient introduction to multi-element models and permits us to develop
some mathematical tools in a simple fashion. Further, when we do discuss
multi-element models, we shall employ a rather restrictive set of condition-
ing axioms. However, for the one-element model we may present an
extremely general set of conditioning assumptions without getting into
too much mathematical complexity. Therefore the analysis of the one-
element case will suggest lines along which the multi-element models can
be generalized.

The reference experiment (see, e.g., Estes & Straughan, 1954; Suppes &
Atkinson, 1960) involves a long series of discrete trials. Each trial is
initiated by the onset of a signal. To the signal the subject is required to
make one of two responses which we denote A, and A,. The trial is
terminated with an E, or E, reinforcing event; the occurrence of E; indi-
cates that response 4, was the correct response for that trial. Thus in a
human learning situation the subject is required on each trial to predict
the reinforcing event he expects will occur by making the appropriate
response—an A, if he expects E; and an A, if he expects E;; at the end of
the trial he is permitted to observe which event actually occurred. Initially
the subject may have no preference between resporses, but as information
accrues to him over trials his pattern of choices undergoes systematic
changes. The role of a model is to predict the detailed features of these
changes.
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The experimenter may devise various schedules for determining the
sequence of reinforcing events over trials. For example, the probability
of an FE; may be (1) some function of the trial number, (2) dependent on
previous responses of the subject, (3) dependent on the previous sequence
of reinforcing events, or (4) some combination of the foregoing. For
simplicity we consider a noncontingent reinforcement schedule. The case is
defined by the condition that the probability of E, is constant over trials
and independent of previous responses and reinforcements. It is customary
in the literature to call this probability 7; thus Pr(E, ,) = = for all a.
Here we are denoting by E; , the event that reinforcement E, occurs on
trial n. Similarly, we shall represent by A; , the event that response 4,
occurs on trial #.

We assume that the stimulus situation comprising the signal light and
the context in which it occurs can be represented theoretically by a single
stimulus element that is sampled with probability 1 when the signal occurs.
At the start of a trial the element is in one of three conditioning states:
in state C, the element is conditioned to the Ay-response and in state C,
to the A,-response; in state C, the element is not conditioned to A; or to
A,. The response rules are similar to those presented earlier. When the
subject is in C; or C,, the 4;- or A,-response occurs with probability 1.
In state C, we assume that either response will be elicited equiprobably;
that is, Pr(4, , , Co,») = §. For some subjects a response bias may exist
that would require the assumption Pr (A1, , Co.) = B, where f # }. For
these subjects it would be necessary to estimate § when applying the model.
However, for simplicity we shall pursue only the case in which responses
are equiprobable when the subject is in C,.

Cint1

Cl,n+l

Fig. 2. Branching process, starting from state
C; on trial n, for a one-element model in a two-
choice, noncontingent case.
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We now present a general set of rules governing changes in conditioning
states. As the model is developed it will become obvious that for some
experimental problems restrictions that greatly simplify the process can
be imposed.

If the subject is in state C; and an E, occurs (i.e., the subject makes an
A,-response, which is correct), then he will remain in C;. However, if
the subject is in C; and an E, occurs, then with probability ¢ the subject
goes to C, and with probability ¢’ to Co. Comparable rules apply when
the subject is in Cy. Thus, if the subject is in C; or C, and his response is
correct, he will remain in C; or C,. If, however, he is in C, or C; and his
response is not correct, then he may shift to one of the other conditioning
states, which reduces the probability of repeating the same response on
the next trial.

Finally, if the subject is in Cy and an E, or E, occurs, then with proba-
bility ¢” the subject moves to Cy or Cy, respectively.® Thus, to summarize,
fori, j=1,2andi#j,

Pr (Ci,n+1 | ElnCln) =1
Pr (Co,n+1 | Ej,ncz',n) =c
Pr (Ci,n+1 I Ej,nCi,n) =c
Pr (Ci,n+1 I Ez‘,nCO,n) = C”

(13)

where 0 < ¢" < land0<c+ ¢ < 1.

We now use the assumptions of the preceding paragraphs and the
particular assumptions for the noncontingent case to derive the transition
matrix in the conditioning states. In making such a derivation it is con-
venient to represent the various possible occurrences on a trial by a tree.
Each set of branches emanating from a point represents a mutually ex-
clusive and exhaustive set of possibilities. For example, suppose that at
the start of trial n the subject is in state Cy; the tree in Fig. 2 represents the
possible changes that can occur in the conditioning state.

5 Here we assume that the subject’s response does not affect the change; that is, if the
subject is in C, and an E; occurs, then he will move to C, with probability ¢”, no matter
whether A4, or A, has occurred. This assumption is not necessary and we could readily
have the actual response affect change. For example, we might postulate ¢,” for an
A,E, or A,E, combination, and c¢,” for the A,E, or A,E, combination; that is,

Pr (Cl,n+1| El,nAl,nCO,n) = Pr (Cz,n+1[ Ez,nAz,nCo,n) =¢
and

Pr (Cl,'rH—I! El,nAz,nCo,n) =Pr (C2,n+1[ Ey, 3 A1,1Co,n) = €&
where

o # ¢

However, such additions make the mathematical process more complicated and should
be introduced only when the data clearly require them.
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The first set of branches is associated with the reinforcing event on
trial n. If the subject is in C; and an E; occurs, then he will stay in state
C, on the next trial. However, if an E, occurs, then with probability ¢
he will go to C,, with probability ¢’ he will go to C,, and with probability
1 — ¢ — ¢’ he will remain in C,.

Each path of a tree, from a beginning point to a terminal point, re-
presents a possible outcome on a given trial. The probability of each
path is obtained by multiplying the appropriate conditional probabilities.
Thus for the tree in Fig. 2 the probability of the bottom path may be
represented by Pr (E, , | Cy,) Pr(Cy 41 | B3 ,C1 ) = (1 — m)(1 — ¢ — ¢).
Two of the four paths lead from C; to C;; hence

pu=Pr(C l C=7+1—-m1—c—c).

Similarly, py, = (1 — m)¢’ and p;, = (I — 7)c, where pi; denotes the
probability of a one-step transition from C; to C;.

For the C, state we have the tree given in Fig. 3. On the top branch an
E, event is indicated; by Eq. 13 the probability of going to C, is ¢” and
of stayingin Cyis 1 — ¢”. Asimilar analysis holds for the bottom branches.
Thus we have

POI o 7TC”
Poz = (1 — m)c”
Pyy=1-—¢".

A combination of these results and the comparable results for C, yields
the following transition matrix:

C, C, C,
Gll=(0=mC+c) (I—m) ol —m)
P =C, c'm 1—c ' —m) (14)
C, cm c'r 1 —a(c" + o).

As in the case of the paired-associate model, a large number of pre-
dictions can be derived easily for this process. However, we shall select
only a few that will help to clarify the fundamental properties of the model.
We begin by considering the asymptotic probability of a particular
conditioning state and, in turn, the asymptotic probability of an A,-
response. The following notation will prove useful: let [p,,] be the transi-
tion matrix and define p{” as the probability of being in state ; on trial
r + n, given that at trial r the subject was in state i. The quantity is

defined recursively:

(1) (n41) __ (n)

Dii =Dy Dii D =2 Pubyy-
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CO.n+1

Fig. 3. Branching process, starting from state
C, on trial n, for a one-element model in a two-
choice, noncontingent case.

Moreover, if the appropriate limit exists and is independent of i, we set

u; = lim p{?.

n— 0
The limiting quantities u;, exist for any finite-state Markov chain that is
irreducible and aperiodic. A Markov chain is irreducible if there is no
closed proper subset of states; that is, no proper subset of states such that
once within this set the probability of leaving it is 0. For example, the
chain whose transition matrix is

123
1732 10
213 30
CHERE N

is reducible because the set {1, 2} of states is a proper closed subset. A
Markov chain is aperiodic if there is no fixed period for return to any state
and periodic if a return to some initial state j is impossible except at ¢,
2t, 3t, . . . trials for # > 1. Thus the chain whose matrix is

1 2 3
10 1 0
210 01
311 00

has period ¢ = 3 for return to each state.
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If there are r states, we call the vector u = (uy, u,, . . . , u,) the stationary
probability vector of the chain. It may be shown (Feller, 1957; Kemeny &
Snell, 1959) that the components of this vector are the solutions of the r
linear equations

T
Uy = z UyD1
v=1
u2 = zluvpvz (15)
V=

uT = zluvpvr
. =
such that 3 u, = 1. Thus, to find the asymptotic probabilities u; of the
v=1

states, we need find only the solution of the r equations. The intuitive
basis of this system of equations seems clear. Consider a two-state chain.
Then the probability p,,,, of being in state 1 on trial n + 1 is the probability
of being in state 1 on trial » and going to 1 plus the probability of being in
state 2 on trial » and going to 1; that is

Pt = Pupn + pu(l — p,).
But at asymptote p,,.; = p, = u; and 1 — p, = u,, whence

Uy = pubs + Paildy,
which is the first of the two equations of the system when r = 2.

It is clear that the chain represented by the matrix P of Eq. 14 is irre-
ducible and aperiodic; thus the asymptotes exist and are independent of
the initial probability distribution on the states. Let [p;] Gj=1,2,3)
be any 3 X 3 transition matrix. Then we seek the numbers u; such that
u; = Y u,p,; and X u; = 1. The general solution is given by u; = D,/ D,

v
where
Dy = psy(1 — ps) + paipse
Dy = pip1s + paal — pr)
Dy = (1 = pr)(I = pas) — parpra
D =D, + D, + D,
Inserting in these equations the equivalents of the p,; from the transition
matrix and renumbering the states appropriately, we obtain
Dy = wc"(c + ¢'w)
Dy = 7=(1 — m)c'(c' + 2c)
D,=(1 — m)c"[e + ¢'(1 — m)].

(16)
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Since D is the sum of the D,’s and since u; = D,/D, we may divide the
numerator and denominator by (¢”)? and obtain

"y = 7(p + em)
2+ e+l — e + 20) + (L —mlp + <l — )]
1 = (1 — m)e(e + 2p) a7

 m(p + em) + a(l — me(e + 2p) + (L = mlp + (1 — )]
Uy =1—uy — uy,
where p = ¢/c” and € = ¢’[c”.
By our response axioms we have
PI' (Al,n) = PI' (Cl n) + % PI' (Co,n)
for all n. Hence
lim Pr (4,,,) = uy + u,

n—* o
_ ot ep i)+ —ep— 1) .
m(e® + 2ep — 2€) + m°(2e — ¥ — 2ep) + p + € '

An inspection of Eq. 18 indicates that the asymptotic probability
of an A;-response is a function of =, p, and e. As will become clear
later, the value of Pr (4, ) is bounded in the open interval from % to
m2[[72 + (1 — m)?]; whether Pr (4, ) is above or below 7 depends on
the values of p and e.

We now consider two special cases of our one-element model. The first
case is comparable to the multi-element models to be discussed later,
whereas the second case is, in some respects, the complement of the first
case.

Case of ¢’ = 0. Let us rewrite Eq. 14 with ¢’ = 0. Then the transition
matrix has the followin g'canonical form:

C C, Co
C[l—cl—m) cl—m) 0
P=C, e 1—cm 0 (19)
Cy c'm 1l —m) 1—c"1

We note that once the subject has left state C, he can never return. In
fact, it is obvious that Pr (C, ,) = Pr(C,,)(1 — ¢")*~* where Pr (Co o) is
the initial probability of being in C,. Thus, except on early trials, C, is not
part of the process, and the subject in the long run fluctuates between
C, and C,, being in C; on a proportion = of the trials.

From Eq. 19 we have also

Pr (Cy,n0) = Pr (Cy I — (1 = m)] + Pr (Cy ,)em + Pr (Co )c"m;
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that is, the probability of being in C, on trial n + 1 is equal to the prob-
ability of being in C; on trial # times the probability p,; of going from C;
to C, plus the probability of being in C, times p,, plus the probability of
being in C, times py,. For simplicity let x, = Pr (C1,0)s Yo = Pr(Cy ),
and z, = Pr (G, ,). Now we know thatz, = z,(1 — ¢”)"! and also that
o+ Yp+2, =1 0ry,=1—2,—2( — ). Making these sub-
stitutions in the foregoing recursion yields

T =2,[l — c(1 — m)] + 2,"n(l — ")+ em[l — 2, — 2,(1 — ¢")" 7]
=z,(1 —¢) + (1 — ") a(c" — ¢) + cm.
This difference equation has the following solution®:
Ty =7 — (m —2)(l — )" — 7[(1 — )" — (1 — )" ]
But Pr (4, ,) = =, + 42,; hence
Pr(4,,)=n—[r—=Pr (C0,1) — Pr (Cl,l)](l — o)t
= Pr(G(m — P — )L (20)
If Pr(Co,) = 0, then we have a simple exponential learning function
starting at Pr (C,,) and approaching = at a rate determined by c. If
Pr(C, 1) # 0, then the rate of approach is a function of both ¢ and ¢”.
We now consider one simple sequential prediction to illustrate another
feature of the one-element model for ¢’ = 0. Specifically, consider the

probability of an 4;-response on trial n 4 1 given a reinforced A4;-response
on trial n; namely Pr (4, , ; | E, 4 ,). Note first of all that

Pr (Al,n+1 l El,nAl,n) Pr (El,nAl,n) = Pr (Al,n+1E1,nA1,n)°

¢ The solution of such a difference equation can readily be obtained. Consider
Zpi1 = a%, + be™! 4+ d where a, b, ¢, and d are constants. Then

) zy=ax, + b+ d.
Similarly, z3 = az, + bc + d and substituting (1) for , we obtain
() T3 = a*x; + ab + ad + be + d.

Similarly, ; = ar; + bc* + d and substituting (2) for x; we obtain
©)) x, = a*x; + a*h + a*d + abc + ad + bc* + d.

If we continue in this fashion, it will be obvious that for n > 2

n—2 n—2 ¢ i
T, = a”“xl + d z at + a™2h z (—)
=0 i=0\4,

Carrying out the summations yields the desired results. See Jordan (1950, pp. 583-584)
for a detailed treatment.
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Further, we may write
Pr (A1, 11E1,,41,)
=ZZj Pr (A1,141Ci ni1E1,041,0.C; )
= Z Pr (Al,n+1 | Cz',n+1E1,nA1,nCi ) Pr (Ci,n+1 | El,nAl,nca',n)
P (Ey| A41,C ) Pr(As, | € PE(C, ).

By assumption the probability of a response is determined solely by the
conditioning state, hence

Pr (Al,n+1 | Ci,n+1E1,nA1,'an,n) = Pr (Al,n+1 | Ci,n—l—l)'

Further, by assumption, the probability of an E;-event is independent of
other events, and Pr(E,, |4, ,C;,) = Substituting these results
in the foregoing expression, we obtain

Pr (Al,n+1E1,nA1,n) =7 Z Pr (Al,n+1 | Cini1) Pr(C; q I El,nAl,nCi,n)
(2%
Pr(4,, | Cyn) Pr(C;,).

Both i and j run over 0, 1, and 2, and therefore there are nine terms in the
sum; but note that when i = 2, the term Pr (4, ,,1 | C; ;1) is zero and
when j = 2 the term Pr (4, , ] C;.n) is zero. Consequently it suffices to
limit i and j to 0 and 1, and we have

Pr (Al,n+1E1,nA1,n)

1
=T ZOPI' (A1,n11 l Cinin) Pr(C; i1 I Ey ;A1,,C1,0) Pr(4y,, l Cy,n) Pr(Cy,,)
=

1
+ 77'2() Pr (Al,n+1 | Cinpr) Pr (Ci,n+1 I El,nAl,nCO,n) Pr (4, l CO,n)Pr (Co,)-

Since the subject cannot leave state C; on a trial when A, is reinforced,
we know that

Pr(Cy i1 ' El,nAl,ncl,n) =1 and Pr(Co,n | El,nAl,nCI,'n) =0;

further, Pr(4; .| Cy,) =1. Therefore the first sum is simply
7 Pr(C;,). For the second sum, Pr(C; [ E, ,4,,C,,) = ¢" and
Pr(Cy ni1 | 1, pAs nCo.) = 1 — ¢”. Further, Pr(4, ,| Cy,) = %; hence
for the second sum we obtain 7
7le"} + $(1 — )31 Pr (G, )
Combining these results,
Pr (4, n+1E1,nA1,n) = W{Pr (Cl,n) + 3 Pr (Co,n)[C" + (1 - C")%]}-
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But
PI' (El,nAl,n) = PI' (El,nl Al,n) PI' (Al,n) =7 PI' (Al,n)>
whence
1 " - 1
Pr (Al,n+1| El,nAl,n) — Pr (Cl,n) + 2 Pr (CO,n)[c + (1 4 )2] .
Pr (Al,n)

We know that Pr(C, ,) and Pr (4, ,) both approach = in the limit and
that Pr (C, ,) approaches 0. Therefore we predict that

lim Pr (4,41 | E;,4,,) =1

n—* o

This prediction provides a sharp test for this particular case of the
model and one that is certain to fail in almost any experimental situation;
that is, even after a large number of trials it is hard to conceive of an
experimental procedure such that a response will be repeated with prob-
ability 1 if it occurred and was reinforced on the preceding trial. Later we
shall consider a multi-element model that provides an excellent description
of many sets of data but is based on essentially the same conditioning rules
specified by this case of ¢’ = 0. It should be emphasized that deterministic
predictions of the sort given in the foregoing equation are peculiar to
one-element models; for the multi-element case such difficulties do not
arise. This point is amplified later.

Case of ¢ = 0. We now consider the case in which direct counter-
conditioning does not occur, that is, ¢ = 0, and thus p = 0and 0 < € < oo.
With this restriction the chain is still ergodic, since it is possible to go
from every state to every other state, but transitions between C, and C,
must go by way of C,. Letting p = 0 in Eq. 18, we obtain

2
. 7w + L7(l — m)e . 1)
7+ a7l —me+ (1 —7)
From Eq. 21 we can draw some interesting conclusions about the
relationship of the asymptotic response probabilities to the ratio € = ¢’/c”.
Differentiating with respect to €, we obtain

Pr(4,.) =

0 (1 —7)(§ — =)
9 Pr(4,,) = .
ae " e) = e T a0 T

If 7(1 — m)(} — 7) # 0, then Pr (4, ) has no maximum for e in the
open interval (0, c0), which is the permissible range on e. In fact, since the
sign of the derivative is independent of ¢, we know that Pr (41,,) Is either
monotone increasing or monotone decreasing in e: strictly increasing if
m(l —m)(} —7) > 0 (ie., 7 < }) and decreasing if 7(1 — #)(3 — 7) < 0
(i.e., 7 > }). Moreover, because of the monotonicity of Pr (4;,,) in €,
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it is easy to compute bounds from Eq. 21. First, we see immediately that
the lower bound (assuming 7 > }) is E]inolo Pr(4,,,) = %. Second, when
e is very small, Pr (4, ,,) approaches «?/[z* + (1 — m)?]. Note, however,
that Eq. 21 is inapplicable when e = 0; for if both ¢ = 0 and ¢’ = 0 the
transition matrix (Eq. 14) reduces to

1 0 0
P=|cdn 1—=¢ (1—m)
0 0 1 ,

and, if the process starts in Cy, Pr (4; ,,) = 7. But for e > 0,if = > 4,
Pr (4, ) is a decreasing function of € and its values lie in the half-open

interval

2
w

w4+ (1 —m)?
It is readily determined that probability matching would not generally be
predicted in this case. When ¢’/c” is greater than 2, the predicted value of
Pr(4,,,,)is less than 7, and when this ratio is less than 2 the predicted value
of Pr (4;,,,) is greater than m.

Finally, we derive Pr (4,1 | E, ,A; ,) for this case. The derivation
is identical to that given for ¢’ = 0. Hence

1 "
lim Pr (Ay | Ep iy ) = 2ot 20l £ A= 1,
n—o uy + 3
Note, however, that for ¢ = 0 the quantity u, is never 0 (except for
7 =0, 1), and consequently Pr (4, 1 [ E, .4, ,) is always less than 1.
Contingent Reinforcement. As a final example we shall apply the
one-element model to a situation in which the reinforcing event on trial n
is contingent on the response on that trial. Simple contingent reinforce-
ment is defined by two probabilities 75, and 7y, such that
Pr (El,n l Al,n) =m; and Pr (El,n I AZ,n) = 1.
We consider the case of the model in which ¢’ = 0 and Pr (C, ) = 0;
that is, the subject is not in state C, on trial 1 and (since ¢’ = 0) he can
never reach C, from C; or C,. Hence on all trials he is in C; or Gy, and
transitions between these states are governed by the single parameter c.
The trees for the C; and C, states are given in Fig. 4.
The transition matrix is

$ < Pr(die) <

C, C,
Cy l:l — (1 =mye (I — 7711)0]
C2 s

P =

CTyy 1 — cmyy
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Cl.n +1

C2,n+1

C2.n+1

C

2n+1

Fig. 4. Branching process for one-element model in two-
choice, contingent case.

and, in terms of this matrix, we may write
Pr(Cyni1) = Pr (Cy )1 — (1 — myy)c] + Pr (Cy,p)emsy.
But Pr(C,,) =1 — Pr (Cy,,) and Pr (C, ,) = Pr (Ay,,); hence
Pr(4; 1) = Pr(4; DIl — (1 — 7))c — cmy] + CTryy.
This difference equation has the solution
Pr(4s,n) = Pr(4y,.) — [Pr(dy,,) — Pr(4y )]l — c(l — gy 4 7)™,
where

Pr(4;,,) = Ta

— 1+ 7Ty
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The asymptote is independent of ¢, and the rate of approach is determined
by the quantity c(1 — 7y, + my). Itis interesting to note that the learning
function for Pr (4, ,) in this case of the one-element model is  identical
to that of the linear model (cf. Estes & Suppes, 1959a).

2. MULTI-ELEMENT PATTERN MODELS
2.1 General Formulation

In the literature of stimulus sampling theory a variety of proposals
has been made for conceptually representing the stimulus situation.
Fundamental to all of these suggestions has been the distinction between
pattern elements and component elements. For the one-element case this
distinction does not play a serious role, but for multi-element formulations
these alternative representations of the stimulus situation specify different
mathematical processes.

In component models the stimulating situation is represented as a
population of elements which the learner is viewed as sampling from trial
to trial. It is assumed that the conditioning of individual elements to
responses occurs independently as the elements are sampled in conjunction
with reinforcing events and that the response probability in the presence of
a sample containing a number of elements is determined by an averaging
rule. The principal consideration has been to account for response
variability to an apparently constant stimulus situation by postulating
random fluctuations from trial to trial in the particular sample of stimulus
elements affecting the learner. These component models have provided a
mechanism for effecting a reconciliation between the picture of gradual
change usually exhibited by the learning curve and the all-or-none law of
association.

For many experimental situations a detailed account of the quantitative
properties of learning can be given by component models that assume
discrete associations between responses and the independently variable
elements of a stimulating situation. However, in some cases predictions
from component models fail, and it appears that a simple account of the
learning process requires the assumption that responses become associated,
not with separate components or aspects of a stimulus situation, but with
total patterns of stimulation considered as units. The model presented in
this section is intended to represent such a case. In it we assume that an
experimentally specified stimulating situation can be conceived as an
assemblage of distinct, mutually exclusive patterns of stimulation, each
of which becomes conditioned to responses on an all-or-none basis. By
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“mutually exclusive’” we mean that exactly one of the patterns occurs
(is sampled by the subject) on each trial. By ‘““distinct”” we mean that no
generalization occurs from one pattern to another. Thus the clearest
experimental interpretation would involve a set of patterns having no
common elements (i.e., common properties or components). In practice
the pattern model has also been applied with considerable success to
experiments in which the alternative stimuli have some common elements
but nevertheless are sufficiently discriminable so that generalization effects
(e.g., “confusion errors”) are small and can be neglected without serious
error.

In this presentation we shall limit consideration to cases in which
patterns are sampled randomly with equal likelihood so that if there
are N patterns each has probability 1/N of being sampled on a trial. This
sampling assumption represents only one way of formulating the model
and is presented here because it generates a fairly simple mathematical
process and provides a good account of a variety of experimental results.
However, this particular scheme for sampling patterns has restricted
applicability. For example, in certain experiments it can be demonstrated
that the stimulus array to which the subject responds is in large part
determined by events on previous trials; that is, trace stimulation associated
with previous responses and rewards determines the stimulus pattern to
which the subject responds. When this is the case, it is necessary to pos-
tulate a more general rule for sampling patterns than the random scheme
proposed (e.g., see the discussion of “hypothesis models™ in Suppes &
Atkinson, 1960).

Before stating the axioms for the pattern model to be considered in
this section, we define the following notions. As before, the behaviors
available to the subject are categorized into mutually exclusive and
exhaustive response classes (A4, A,, . . ., 4,). The possible experimenter-
defined outcomes of a trial (e.g., giving or withholding reward, uncondi-
tioned stimulus, knowledge of results) are classified by their effect on
response probability and are represented by a mutually exclusive and
exhaustive set of reinforcing events (E,, Ey, . . ., E,). The event E; (i # 0)
indicates that response A4, is reinforced and E; represents any trial outcome
whose effect is neutral (i.e., reinforces none of the 4,’s). The subject’s
response and the experimenter-defined outcomes are observable, but the
occurrence of E; is a purely hypothetical event that represents the rein-
forcing effect of the trial outcome. Event E, is said to have occurred when
the outcome of a trial increases the probability of response A4, in the
presence of the given stimulus—provided, of course, that this probability is
not already at its maximum value.

We now present the axioms. The first group of axioms deals with the
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conditioning of sampled patterns, the second group with the sampling of
patterns, and the third group with responses.

Conditioning Axioms

Cl. On every trial each pattern is conditioned to exactly one response.

C2. If a pattern is sampled on a trial, it becomes conditioned with prob-
ability c to the response (if any) that is reinforced on the trial; if it is
already conditioned to that response, it remains so.

C3. If no reinforcement occurs on a trial (i.e., E, occurs), there is no change
in conditioning on that trial.

C4. Patterns that are not sampled on a trial do not change their conditioning
on that trial.

CS5. The probability ¢ that a sampled pattern will be conditioned to a
reinforced response is independent of the trial number and the pre-
ceding events.

Sampling Axioms

S1. Exactly one pattern is sampled on each trial.

S2. Given the set of N patterns available for sampling on a trial, the
probability of sampling a given pattern is 1N, independent of the trial
number and the preceding events.

Response Axiom
R1. On any trial that response is made to which the sampled pattern is
conditioned.

Later in this section we apply these axioms to a two-choice learning
experiment and to a paired-comparison study. First, however, we shall
prove several general theorems. Before we can begin our analysis it is
necessary to define the notion of a conditioning state. For the axioms
given, all patterns are sampled with equal probability, and it suffices
to let the state of conditioning indicate the number of patterns conditioned
to each response. Hence for r responses the conditioning states are
the ordered r-tuples (ky, ks, ...,k,) where k,=0,1,2,..., N and
ki + ks + ... + k, = N; the integer k, denotes the number of patterns
conditioned to the A, response. The number of possible conditioning
states is (N +r=1

N
patterns to have different likelihoods of being sampled, it would be
necessary to specify not only the number of patterns conditioned to a
response but also the sampling probabilities associated with the patterns.)
For simplicity we limit consideration in this section to the case of two
alternatives, except for one example in which r = 3. Given only two
alternatives, we denote the conditioning state on trial » of an experiment

. (In a generalized model, which permitted different
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as C; ,, wherei =0, 1,2,..., N; the subscript i indicates the number of
patterns conditioned to 4, and N — i the number conditioned to A,.
TRANSITION PROBABILITIES. Only one pattern is sampled per trial;
therefore the subject can go from state C; only to one of the three states
C; 1, C;, or C;;; on any given trial. The probabilities of these transitions
depend on the value of the conditioning parameter ¢, the reinforcement
schedule, and the value of i. We now proceed to compute these prob-
abilities.

If the subject is in state C; on trial n and an E; occurs, then the possible
outcomes are indicated by the tree in Fig. 5. On the upper main branch,
which has probability i/N, a pattern that is conditioned to A4, is sampled
and, since an E;-reinforcement occurs, the pattern remains conditioned to
A,. Hence the conditioning state on trial # + 1 is the same as on trial n
(see Axiom C2). On the lower main branch, which has probability
(N — i)/N, a pattern conditioned to A, is sampled; then with probability
¢ the pattern is conditioned to 4, and the subject moves to conditioning
state C,,;, whereas with probability 1 — ¢ conditioning is not effective
and the subject remains in state C;. Putting these results together, we obtain

N—i
Pr (Ciyrna | E1nCi) = ¢ N
; (22a)
Pr(Cinia ‘ E.C)=1—c+c N
Similarly, if an E, occurs on trial #,
Pr(Ciiyn1 l Ey,Cin) = ¢ #
N i (22b)
Pr (Ci,n+1 | E2,nCi,n) =1-c + ¢ .
Ci,n+1
Citin+1
Cins1

Fig. 5. Branching process for N-element model
on a trial when the subject starts in state C; and
an Ej-event occurs.
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By Axiom C3, if an E, occurs, then
Pr (Ci,n+1 I EO,nCi,n) = 1 (220)

Noting that a transition upward can occur only when a pattern condi-
tioned to A, is sampled on an E,-trial and a transition downward can
occur only when a pattern conditioned to 4, is sampled on an Ejy-trial, we
can combine the results from Eq. 22a-c to obtain

Pl' (Ci+1,n+1 | Cz,n) =c Pr (El,n | A2,nci,n) (23(1)

N — i
N
Pr (Cioyniz | Cin) = cﬁ Pr (s, | A1,4Ci) (23b)

Pr (Cz',n+1 | Ci,n) =1—-c+ C[']lv Pr (E,,, | Al,nci,n)
N —1i

+ Pr (E,,, | As,C; ) (230

+ Pr(E,, | cz-,n)}

for the probabilities of one-step transitions between states. Equation 23a,
for example, states that the probability of moving from the state with
elements conditioned to A4, to the state with i + 1 elements conditioned to
A, is the product of the probability (N — #)/N that an element not already
conditioned to A, is sampled and the probability cPr (£, | Ay ,Cin)
that, under the given circumstances, conditioning occurs.

As defined earlier, we have a Markov process in the conditioning states
if the probability of a transition from any state to any other state depends
at most on the state existing on the trial preceding the transition. By
inspection of Eq. 23 we see that the Markov condition may be satisfied
by limiting ourselves to reinforcement schedules in which the probability
of a reinforcing event E; depends at most on the response of the given
trial; that is, in learning-theory terminology, to noncontingent and simple
contingent schedules. This restriction will be assumed throughout the
present section except for a few remarks in which we explicitly consider
various lines of generalization.

With these restrictions in mind, we define

i = Pr (Ej,n | Ai,n)s
where j =0tor, i =1tor, and 2 m,; = 1; that is, the reinforcement on

2
a trial depends at most on the response of the given trial. Further, the
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reinforcement probabilities do not depend on the trial number. We may
then rewrite Eq. 23 as follows:

N—i
9iiv1 = € N a1 (24a)
N —1i i
qii = 1—c¢ N Moy — € Nﬂ-l2 (24b)
i
9dii-1= ¢ }'V‘77'12- (24¢)

Note that we use the notation ¢;; in place of Pr (C; 4 [ C, ). The reason
is that the transition probabilities do not depend on n, given the restrictions
on the reinforcement schedule stated above, and the simpler notation
expresses this fact.

RESPONSE PROBABILITIES AND MOMENTS. By Axioms S1, S2, and
R1 we know that the relation between response probability and the con-
ditioning state is simply ;

P[ (Al,n ] Cz,n) N .

Hence N
PI‘ (Al,n) = E PI' (Al,n I Cz,n) Pr (Cz,n)
=0
¥
= > —Pr(C,,). 25
> Pr(Cy) (25)
But note that by definition of the transition probabilities g,
PI' (Cz n) - PI' (CO n—l)q01 + PI‘ (Cl n—l)qlz e + PI' (CN,n—l)qu
(26)

= Z Pr (Ca n—l)qn

The latter expressmn, together with Eq. 25, serves as the basis for a general
recursion in Pr (4, ,):

N i N
PI' (Al,n) = Z -~ Z PI' (C}',n—l)qji‘
i=0N j=o

Now substituting for g;; in terms of Eq. 24 and rearranging the sum we
have

N -
Pr(dg,) =2 NI Pr (Cy ) — Cm1y z Pr (Cipna)

i=0
N— N

— CTy Z l( P (Cz n—1)
N-1 N i

+ ey _;) (_l‘i%(z—l) Pr (C;,1)

Ni(i — 1)
Pr (C; ,.—1)-
+C7T12Z§1 N (Cin-1)
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The first sum is, by Eq. 25, Pr (4, ,_;). Let us define
N
a2,n = z (IZ/Nz) PI' (Cz,n),
i=0

then the second sum is simply —cmys0t5 ,, 4. Similarly, the third sum is

—cmy [Pr (Al,n—l) — Pr (CN,n—l) — %y 1 T Pr (CN,n—1)]
= —cmy [Pr (Al,n—l) - ‘xz,n—ﬂs

and so forth. Carrying out the summation and simplifying, we obtain the
following recursion in Pr (4, ,):

Pr(4,,,) = |:1 - %(7’12 + 7721)} Pr (Al,n—l) + %7721- 2n

This difference equation has the well-known solution (cf. Bush & Mos-
teller, 1955; Estes, 1959b; Estes & Suppes, 1959)

Pr (4y,) = Pr (4;.) — [Pr (4y.) — Pr (Al,l)][l L ma+ wn)} "
(28)

where
Pr(dy,) = —2
” To1 + T1a
At this point it will also be instructive to calculate the variance of the
distribution of response probablhtles Pr(4,, [ C; ). The second raw

moment, as defined above, is
N i2 N i2 N
2= 2 PG = 35 IPr(Ch e (29)
Carrying out the summation, as in the case of Eq. 27, we obtain
2c
Xo,n = °‘2,n—1[1 - —N‘(ﬂ'm + 7721)}

+ Pr(4y,,-1) [077'12 + ¢y (]%7 ;2)] + J_\;E Ta1-
Subtracting the square of Pr (4, ,), as given in Eq. 28, from o, , yields
the variance of the response probabilities. The second and higher moments
of the response probabilities are of experimental interest primarily because
they enter into predictions concerning various sequential statistics. We
shall return to this point later.
ASYMPTOTIC DISTRIBUTIONS. The pattern model has one particularly
advantageous feature not shared by many other learning models that have
appeared in the literature. This feature is a simple calculational procedure
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for generating the complete asymptotic distribution of conditioning states
and therefore the asymptotic distribution of responses. The derivation
to be given assumes that all elements g, ; 1, ¢, ;» ¢; ;11 Of the transition
matrix are nonzero; the same technique can be applied if there are zero
entries, except, of course, that in forming ratios one must keep the zeros
out of the denominators.

As in Sec. 1.3, we let lim Pr(C; ,) = u;. The theorem to be proved is

n— 0

that all of the asymptotic conditioning state probabilities u; can be
expressed recursively in terms of #,; since the »,’s must sum to unity, this
recursion suffices to determine the entire distribution.

By Eq. 26 we note that

Uy = Ugqoo + Y1910
hence

Up __ 910 _ Y0
Uy 1—4qe dn .
We now prove by induction that a similar relation holds for any adjacent
pair of states; that is,
i
U1 Qo1 ‘
For any state i we have by Eq. 26
Uy = U 1ia, UG+ Ui
Rearranging,
u(l — q;) = U 1qs 1 + UGz
However, under the inductive hypothesis we may replace u,_, by its
equivalent u,g, ; 1/q,, ;. Hence
Uids,i19i-1,
i1,

= UG; ;-1 + Uppadiy1,

u,(l — qi,i) = + U141,

or
u, (1 — Qii — 9iyim1) = Uir1Gia,r

However, 1 — ¢, ; — ¢; ;.1 = ¢, 441, Since ¢, , 1 + ¢, + ¢; ;2 = 1, and
therefore
U _ i
. Uir1  Giu+
which concludes the proof.
Thus we may write

o1 912 q12901
Uy = — Uy, U= —Uy = ——

qd10 q21 921410

(11}
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and so forth. Since the ;s must sum to unity, #, also is determined. To
illustrate the application of this technique, we consider some simple cases.
For the noncontingent case discussed in Sec. 1.3.

T = T = Ty
1 — 7 = my = .
By Eq. 24 we have
N —1i
N

9iiv1 = € ™

i
9ii1 = C N 1 —m).

Applying the technique of the previous paragraph,
Uy _ e _ Nm
u, cA/NYA—7m) (A —m)
uy _ me[(N —DIN] _ (N = Dm
u; (1 —mc2/N) 21 —m=)

and in general

U (N—k+ D

U,  k(l—m
This result has two interesting features. First, we note that the asymptotic
probabilities are independent of the conditioning parameter c. Second,
the ratio of u,, to u,_; is the same ds that of neighboring terms

(JZ)TT’C(]. — 7V and ( k]j 1)1rk‘1(1 — )Nkt

in the expansion of [7 + (1 — m)]". Therefore the asymptotic prob-
abilities in this case are binomially distributed. For a population of
subjects whose learning is described by the model, the limiting proportion
of subjects having all N patterns conditioned to 4, is ='; the proportion
having all but one of the N patterns conditioned to 4, is Ne¥ Y1 — 7);
and so on.

For the case of simple contingent reinforcement,

Uy _ (N =k + Dmye /kwmc _ (N —k+ Dmy
Up N N ks '

Again we note that the u; are independent of ¢. Further the ratio u, to
4,y is the same as that of

N w’;lwi‘;"‘ to N ﬂgflwﬁ_k“.
k k—1




162 STIMULUS SAMPLING THEORY

Therefore the asymptotic state probabilities are the terms in the expansion
of

( 21 + T2 )N.

o1 + T2 a1 + 7ya

Explicit formulas for state probabilities are useful primarily as inter-
mediary expressions in the derivation of other quantities. In the special
case of the pattern model (unlike other types of stimulus sampling models)
the strict determination of the response on any trial by the conditioning
state of the trial sample permits a relatively direct empirical interpretation,
for the moments of the distribution of state probabilities are identical with
the moments of the response random variable. Thus in the simple con-
tingent case we have immediately for the mean and variance of the response
random variable A

e e

=1 N o1 + 1o 21 T 712 o1 + T2
and
N 12 /N % N—k
var () = 3 (1) (=T f (2 T tmaup
=1 N o1 + 1o/ \ 7oy + 7y
21712

B (77'21 + 77'12)2 .

A bit of caution is needed in applying this last expression to data. If we
select some fixed trial  (large enough so that the learning process may be
assumed asymptotic), then the theoretical variance for the A;-response
totals of a number of independent samples of K subjects on trial # is
simply K[mymia/(m41 + 715)?] by the familiar theorem for the variance of a
sum of independent random variables. However, this expression does not
hold for the variance of A4;-response totals over a block of K successive
trials. The additional considerations involved in the latter case are dis-
cussed in the next section.

2.2 Treatment of the Simple Noncontingent Case

In this section we shall consider various predictions that may be derived
from the pattern model for simple predictive behavior in a two-choice
situation with noncontingent reinforcement. Each trial in the reference
experiment begins with the presentation of a ready signal; the subject’s
task is to respond to the signal by operating one of a pair of response keys,
A; or Ay, indicating his prediction as to which of two reinforcing lights
will appear. The reinforcing lights are programmed by the experimenter to
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occur in random sequence, exactly one on each trial, with probabilities
that are constant throughout the series and independent of the subject’s
behavior.

For illustrative purposes, we shall use data from two experiments of this
sort. In one of these, henceforth designated the 0.6 series, 30 subjects were
run, each for a series of 240 trials, with probabilities of 0.6 and 0.4 for the
two reinforcing lights. Details of the experimental procedure, and a more
complete analysis of the data than we shall undertake here, are given in
Suppes & Atkinson (1960, Chapter 10). In the other experiment, hence-
forth designated the 0.8 series, 80 subjects were run, each for a series of
288 trials, with probabilities of 0.8 and 0.2 for the two reinforcing lights.
Details of the procedure and results have been reported by Friedman et al.
(1960). A possibly important difference between the conditions of the
two experiments is that in the 0.6 series the subjects were new to this type
of experiment, whereas in the 0.8 series the subjects were highly practiced,
having had experience with a variety of noncontingent schedules in two
previous experimental sessions.

For our present purposes it will suffice to consider only the simplest
possible interpretation of the experimental situation in terms of the pattern
model. Let O, denote the more frequently occurring reinforcing light and
0, the less frequent light. We then postulate a one-to-one correspondence
between the appearance of light O; and the reinforcing event E; which is
associated with A, (the response of predicting 0,). Also we assume that
the experimental conditions determine a set of NV distinct stimulus patterns,
exactly one of which is present at the onset of any given trial. Since, in
experiments of the sort under consideration, the experimenter usually
presents the same ready signal at the beginning of every trial, we might
assume that N would necessarily equal unity. However, we shall not
impose this restriction on the model. Rather, we shalllet N appear as a free
parameter in theoretical expressions; then we shall seek to determine from
the data the value of N required to minimize the disparities between theo-
retical and observed values.

If the data of a particular experiment yield an estimate of NV greater than
unity and if, with this estimate, the model provides a satisfactory account
of the empirical relationships in question, we shall conclude that the
learning process proceeds as described by the model but that, regardless
of the experimenter’s intention, the subjects are sampling a population of
stimulus patterns. The pattern effective at the onset of a given trial might
comprise the experimenter’s ready signal together with stimulus traces
(perhaps verbally mediated) of the reinforcing events and responses of one
or more preceding trials.

It will be apparent that the pattern model could scarcely be expected to
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provide a completely adequate account of the data of two-choice experi-
ments run under the conditions sketched above. First, if the stimulus
patterns to which the subject responds include cues from preceding events,
then it is extremely unlikely that all of the available patterns would have
equal sampling probabilities as assumed in the model. Second, the different
patterns must have component cues in common, and these would be
expected to yield transfer effects (at least on early trials) so that the response
to a pattern first sampled on trial » would be influenced by conditioning
that occurred when components of that pattern were present on earlier
trials. However, the pattern model assumes that all of the patterns avail-
able for sampling are distinct in the sense that reinforcement of a response
to one pattern has no effect on response probabilities associated with other
patterns.

Despite these complications, many investigators (e.g., Suppes & Atkin-
son, 1960; Estes, 1961b; Suppes & Ginsberg, 1962; Bower, 1961) have
found it a useful strategy to apply the pattern model in the simple form
presented in the preceding section. The goal in these applications is not
the perhaps impossible one of accounting for every detail of the experi-
mental results but rather the more modest, yet realizable, one of obtaining
valuable information about various theoretical assumptions by comparing
manageably simple models that embody different combinations of assump-
tions. This procedure is illustrated in the remainder of the section.
SEQUENTIAL PREDICTIONS. We begin our application of the pattern
model with a discussion of sequential statistics. It should be emphasized
that one of the major contributions of mathematical learning theory has
been to provide a framework within which the sequential aspects of learn-
ing can be scrutinized. Before the development of mathematical models
little attention was paid to trial-by-trial phenomena; at the present time,
for many experimental problems, such phenomena are viewed as the most
interesting aspect of the data.

Although we consider only the noncontingent case, the same methods
may be used to obtain results for more general reinforcement schedules.
We shall develop the proofs in terms of two responses, but the results hold
for any number of alternatives. If there are r responses in a given experi-
mental application, any one response can be denoted 4, and the rest
regarded as members of a single class, 4,.

We consider first the probability of an 4, response, given that it occurred
and was reinforced on the preceding trial; that is, Pr (4; .4 | E; ,A4; ).
It is convenient to deal first with the joint probability Pr (4, ,, 1E; ,A4; ,)
and to conditionalize later. First we note that

PI' (Al,n+1E1,nA1,n) = z Pr (Al,n+1Cj,n+1E1,nA1,nCi,n)9 (30)
1,7
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and that Pr (4, ,11C; n11E1,n41,,C;,,) may be expressed in terms of con-
ditional probabilities as

PI' (Al,n+1 | Cj,n+1E1,nA1,nCi,n) Pr (C:i,n+1 I El,nAl,nCi,n)
: PI' (El,n I Al,nCz‘,n)Pr (Al,n I Cz,n) PI' (Cz,n)

But from the sampling and response axioms the probability of a response
on trial 7 is determined solely by the conditioning state on trial #»; that is,
the first factor in the expansion can be rewritten simply as
Pr (4; 11| Cj.nra)- Further, by Axiom R1, we have

Pr (Al,n+1 I Ci,n—l—l) = JjIN.

For the noncontingent case the probability of an E; on any trial is inde-
pendent of previous events and consequently we may write

Pf (El,n l Al,nCi,n) = .
Next, we note that
1, if i=j
Pr (Cj,n+1 , El,nAl,nCi,n) = . . .
0, if i#j;
that is, an element conditioned to 4, is sampled on trial n (since an A,-
response occurs on 1) and thus by Axiom C2 no change in the conditioning

state can occur.
Putting these results together and substituting in Eq. 30, we obtain

.2
1
Pr (Al,n+1E1,nA1,n) = z ]'F Pr (Ci,n+ll El,nAl,nCi,n) Pr (Cz,n)

i2
=m — Pr (Cz,n)

7 N?
=7TO(2’n9 (31a)
and
iged
Pr(A; pi1| E1ndin) = __%n
(A1ni1| ExnAs,n) Pr (E,,,A41,,)
O(271
_ Yan 31b
Pr (Al,n) ( )

In order to express this conditional probability in terms of the parameters
7, ¢, N, and Pr (4, ;), we simply substitute into Eq. 315 the expression
given for Pr (4, ,) in Eq. 28 and the corresponding expression for «, ,
that would be given by the solution of the difference equation (Eq. 29).
Unfortunately, the expression so obtained is extremely cumbersome to
work with. Consequently it is usually preferable in working with data
to proceed in a different way.
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Suppose the data to be treated consist of proportions of occurrences of
the various trigrams 4y ,, 1 E; ,4; , over blocks of M trials. If, for example,
M =5, then in the protocol

Trial | 1 2 3 4 5

Event ,AIEI AE, AE, AE, AE,

There are four opportunities for such trigrams. The combination A ,,;
- Ey 44, , occurs on two of these, 4, ,,.1E; ,4, , on one and 0 PRIRY S P
on the other; hence the proportions of occurrence of these trigrams are
0.50, 0.25, and 0.25, respectively. To deal theoretically with quantities such
as these, we need only average both sides of Eq. 314 (and the corresponding
expressions for other trigrams) over the appropriate block of trials, ob-
taining, for example, for the block running from trial n through trial
n+M-—1

1 n+M—1 T n+M—1
P = — E Pr (Al,n’+1E1,n’A1,n’) = — E %y, = miy(n, M), (32a)
M n'=n M 72

where a,(n, M) is the average value of the second moment of the response
probabilities over the given trial block. By strictly analogous methods
we can derive theoretical expressions for other trigram proportions:

1 n+M-1

D112 = ]\_4 2 Pr (Al,n'+1El,n’A2,n')

— {(1 _ -;7) 5,(n, M) + % — ayn, M):l, (32b)

1 n+M—1
P11 = —1\—/1 2 Pr (Al,n'+1E2,n’A1,n’)

n=n

= (1 —m) [&2(n, M) — %o’cl(n, M)], (32¢)

n+M—-1

D122 = _Z\—T z Pr (Al,n'+1E2,n'A2,n’)

n'=n

= (1 = m[a(n, M) — ay(n, M)], (32d)

and so on; the quantity &,(n, M) denoting the average 4,-probability (or,
equivalently, the proportion of A,-responses) over the given trial block.

Now the average moments &, can be treated as parameters to be esti-
mated from the data in order to mediate theoretical predictions. To
illustrate, let us consider a sample of data from the 0.8 series. Over the
first 12 trials of the = = 0.8 series, the observed proportion of 4,-responses



MULTI-ELEMENT PATTERN MODELS 1'67

for the group of 80 subjects was 0.63 and the observed values for the tri-
grams of Eq. 32a-d were py;; = 0.379, py;, = 0.168, pyyy = 0.061, and
P12 = 0.035. Using py;; to estimate a(1, 12), we have from Eq. 32a

0.379 = 0.8[ay(1, 12)],
which yields as our estimate
%(1, 12) = 0.47.

Now we are in a position to predict the value of p;,,. Substituting the
appropriate parameter values into Eq. 32d, we have

Praa = 0.2(0.63 — 0.47) = 0.032,

which is not far from the observed value of 0.035. Proceeding similarly,
we can use Eq. 325 to estimate ¢/N, namely,

c c
=0.168 = 0.8| {1 — —](0.63 — — 047/,
D112 |:( N)( )+ N J

from which
= 0.135.

2|

With this estimate in hand, together with those already obtained for the
first and second moments, we can substitute into Eq. 32c and predict the

value of pigy: Pr = 0.2[0.47 — 0.135(0.63)]
= 0077,

which is somewhat high in relation to the observed value of 0.061.

It should be mentioned that the simple estimation method used above
for illustrative purposes would be replaced, in a serious application of the
model, by a more systematic procedure. For example, one might simul-
taneously estimate &, and ¢/N by least squares, employing all eight of the
Pux; this procedure would yield a better over-all fit of the theoretical and
observed values.

A limitation of the method just described is that it permits estimation
of the ratio ¢/N but not estimation of ¢ and N separately. Fortunately, in
the asymptotic case, the expressions for the moments «; are simple enough
so that expressions for the trigrams in terms of the parameters are manage-
able; and it turns out to be easy to evaluate the conditioning parameter
and the number of elements from these expressions. The limit of «, ,, for
large n is, of course, = in the simple noncontingent case. The limit, «,,
of a, , may be obtained from the solution of Eq. 29; however, a simpler
method of obtaining the same result is to note that, by definition,

iZ
Ay = E-N—2 U,

i
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where u; again represents the asymptotic probability of the state in which
i elements are conditioned to 4;. Recalling that the u; are terms of the
binomial distribution, we may then write

e
- Niz s i2(];’ )#(1 —

The summation is the second raw moment of the binomial distribution
with parameter 7 and sample size N. Therefore

__ Nu(l —m) + N%*

&g
N2
33
_rll=m . =
N
Using Eq. 33 and the fact that lim Pr (4, ,) = =, we have
. 1 1
lim Pr (Ay | Ex i) = (1 = 1) + . (34a)
By identical methods we can establish that
. 1 c
lm Pr (41| Eupda) = (1= ) + 5, (34b)
lim Pr (Ay s | Espi) = (1= ) + 155 49
’ o N N
and 1
lim Pr (A 11 | Ez nds,) = 7r(1 - N)' (34d)

With these formulas in hand, we need only apply elementary probability
theory to obtain expressions for dependencies of responses on responses or
responses on reinforcements, namely,

lim Pr (4y 1] Ay ) =+ =X =) (350)
lim Pr (Ay ., | Ag,) =7 — (1—TNcl’ (35b)
. (4 C

lim Pr (Ay,,11 | Ev,) = (1 — N)W + I (35¢)

lim Pr (Ay, 11 | Ean) = (1 — ﬁ)w (35d)
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Given a set of trigram proportions from the asymptotic data of a two-
choice experiment, we are now in a position to achieve a test of the
model by using part of the data to estimate the parameters ¢ and N,
and then substituting these estimates into Eq. 34a-d and 35a-d to predict
the values of all eight of these sequential statistics. We shall illustrate this
procedure with the data of the 0.6 series. The observed transition fre-
quencies F(4; ,.1 | E; ,A, ,) for thelast 100 trials, aggregated over subjects,
are as follows:

A, Ay
AE; | 748 298

A T 204 249
ALy 394 342

AE, | 462 306
AE, | 186 264

An estimate of the asymptotic probability of an 4,-response given an 4, £;-
event on the preceding trial can be obtained by dividing the first entry in
row one by the sum of the row; that is, Pr (4, | E A;) = 748/(748 + 298) =
0.715. But, if we turn to Eq. 34a, we note that lim Pr (4, , [ E, ,A,.,) =
7(1 — 1/N) + 1/N. Hence, letting 0.715 = 0.6(1 — 1/N) + 1/N, we obtain
an estimate? of N = 3.48. Similarly Pr (4, | E Ay) = 462/(462 + 306) =
0.602, which by Eq. 34b is an estimate of =(1 — 1/N) + ¢/N; using our
values of = and N we find that ¢/N = 0.174 and ¢ = 0.605.

Having estimated ¢ and N, we may now generate predictions for any of
our asymptotic quantities. Table 3 presents predicted and observed values
for the quantities given in Eq. 34a to Eq. 35d. Considering that only two
degrees of freedom have been utilized in estimating parameters, the close
correspondence between theoretical and observed quantities in Table 3
may be interpreted as giving considerable support to the assumptions of
the model. A similar analysis of the asymptotic data from the 0.8 series,
which has been reported elsewhere (Estes, 1961b), yields comparable
agreement between theoretical and observed trigram proportions. The
estimate of ¢/N for the 0.8 data is very close to that for the 0.6 data
(0.172 versus 0.174), but the estimates of ¢ and N (0.31 and 1.84, respec-
tively) are both smaller for the 0.8 data. It appears that the more highly
practiced subjects of the 0.8 series are, on the average, sampling from a
smaller population of stimulus patterns and at the same time are less
responsive to the reinforcing lights than the more naive subjects of the
0.6 series.

7 For any one subject, N must, of course, be an integer. The fact that our estimation
procedures generally yield nonintegral values for N may signify that ¥ varies somewhat
between subjects, or it may simply reflect some contamination of the data by sources
of experimental error not represented in the model.
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Since no model can be expected to give a perfect account of fallible data
arising from real experiments (as distinguished from the idealized experi-
ments to which the model should apply strictly), it is difficult to know how
to evaluate the goodness-of-fit of theoretical to observed values. In
practice, investigators usually proceed on a largely intuitive basis, evaluat-
ing the fit in a given instance against that which it appears reasonable to
hope for in the light of what is known about the precision of experimental
control and measurement. Statistical tests of goodness-of-fit are sometimes

Table 3 Predicted (Pattern Model) and Observed Values of
Sequential Statistics for Final 100 Trials of the 0.6 Series

Asymptotic

Quantity Predicted  Observed
Pr (4, | E A4y 0.715 0.715
Pr (4, | E;Ay) 0.541 0.535
Pr (4, | E\Ay) 0.601 0.601
Pr (4, | E;A,) 0.428 0.413
Pr(4,| 4y 0.645 0.641
Pr(4,| 4y 0.532 0.532
Pr(4,| E) 0.669 0.667
Pr(4,| E;) 0.496 0.489

possible (discussions of some tests which may be used in conjunction with
stimulus sampling models are given in Suppes & Atkinson, 1960); however,
statistical tests are not entirely satisfactory, taken by themselves, for a
sufficiently precise test will often indicate significant differences between
theoretical and observed values even in cases in which the agreement is
as close as could reasonably be hoped for. Generally, once a degree of
descriptive accuracy that appears satisfactory to investigators familiar
with the given area has been attained, further progress must come largely
via differential tests of alternative models.

In the case of the two-choice noncontingent situation the ingredients
for one such test are immediately at hand; for we developed in Sec. 1.3
a one-clement, guessing-state model that is comparable to the N-element
model with respect to the number of free parameters and that to many
might seem equally plausible on psychological grounds. These models
embody the all-or-none assumption concerning the formation of learned
associations, but they differ in the means by which they escape the deter-
ministic features of the simple one-element model. It will be recalled that
the one-element model cannot handle the sequential statistics considered
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in this section because it requires, for example, a probability of unity for
response A, on any trial following a trial on which 4, occurred and was
reinforced. In the N-element model (with N > 2), there is no such con-
straint, for the stimulus pattern present on the preceding reinforced trial
may be replaced by another pattern, possibly conditioned to a different
response, on the following trial. In the guessing-state model there is no
strict determinacy, since the 4,-response may occur on the reinforced trial
by guessing if the subject is in state C; and, if the reinforcement were not
effective, a different response might occur, again through guessing, on the
following trial.

The case of the guessing-state model with ¢ = 0 (c, it will be recalled,
being the counterconditioning parameter) provides a two-parameter model
which may be compared with the two-parameter, N-element model. We
will require an expression for at least one of the trigram proportions studied
in connection with the N-element model. Let us take Pr(4; ,.1E1 ,4,,,) for
this purpose. In Sec. 1.3 weobtained anexpression for Pr(4; ;.1 | E1,nA1,0)
for the case in which ¢ = 0, and thus we can write at once

Pr (Al,n+1E1,nA1,n) = ”{ul,n + %uo,n[C” + (- C”)%]}- (36a)

Since we are interested only in the asymptotic case, we drop the n-sub-
script from the right-hand side of Eq. 36a and have for the desired
theoretical asymptotic expression

P = mluy + u(1 + )il (360)

Substituting now into Eq. 36b the expressions for u; and u, derived in

Sec. 1.3, we obtain finally

2 [2477' + (1 - :)6(1 —C )] . (36C)
A + (1 — ) 4+ 7(1 — 7)e]

P =7

To apply this model to the asymptotic data of the 0.6 series, we may
first evaluate the parameter e by setting the observed proportion of 4;-
responses over the terminal 100 trials, 0.593, equal to the right-hand side
of Eq. 21 and solving for ¢, namely,

mlr + (1 — m)(e/2)]
w4+ (1 =7+ 7l —me

0.593 =

_0.6(0.6 + 0.2¢)
0.52 + 0.24¢ ~

and ¢ = 2.315.
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Now, by introducing this value for € into Eq. 36¢ and simplifying, we
obtain the prediction P = 0.2782 4 0.0775¢".

Since the observed value of p;;; for the 0.6 data is 0.249, it is apparent
that no matter what value (in the admissible range 0 < ¢” < 1) is chosen
for the parameter ¢” the value predicted from the guessing state model will
be too large. Further analysis, using the methods illustrated, makes it
clear that for no combination of parameter estimates can the guessing-
state model achieve predictive accuracy comparable to that demonstrated
for the N-element model in Table 3. Although this one comparison cannot
be considered decisive, we might be inclined to suspect that for inter-
pretation of two-choice, probability learning the notion of a reaccessible
guessing state is on the wrong track, whereas the N-element sampling
model merits further investigation.

MEAN AND VARIANCE OF A; RESPONSE PROPORTION. By letting
m1 = 7y = w in Eq. 28, we have immediately an expression for the
probability of an 4;-response on trial z in the noncontingent case, namely,

Pr(Ay,) == — [r — Pr (Al,l)](l - -]%) - (37)

If we define a response random variable A, which equals 1 or 0 as 4,
or A,, respectively, occurs on trial n, then the right side of Eq. 37 also
represents the expectation of this random variable on trial n. The expected
number of A;-responses in a series of K trials is then given by the sum-
mation of Eq. 37 over trials,

ERy) = gE(An) — Km— % [r — Pr (Am)][1 - (1 - %)K} (38)

In experimental applications we are frequently interested in the learning
curve obtained by plotting the proportion of A;-responses per K-trial
block. A theoretical expression for this learning function is readily ob-
tained by an extension of the method used to derive Eq. 38. Let = be the
ordinal number of a K-trial block running from trial K(z — 1) + 1 to
Kz, wherez = 1, 2, . . ., and define P() as the proportion of 4,-responses
in block . Then

1 K K(z—1)
P@) = SPri) = 3 Pe(,0)]

—— % [ — Pr (Al,l)][l - (1 - %)K] (1 - %)K(H). (394)

The value of Pr (4, ;) should be in the neighborhood of 0.5 if response bias
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does not exist. However, to allow for sampling deviations we may elimi-
nate Pr (4, ,) in favor of the observed value of P(1). This can be donein the

following way. Note that
N K
P(l) =m— [ — Pr (Alyl)][l - (1 — %) ]

Solving for [r — Pr(4,,)] and substituting the result in Eq. 39a, we
obtain

K(x—1)
C) . (39b)

P(z) = m — [m — P(1)](1 -~

Applications of Eq. 395 to data have led to results that are satisfying in
some respects but perplexing in others (see, e.g., Estes, 1959a). In most
instances the implication that the learning curve should have = as an asymp-
tote has been borne out (Estes, 1961b, 1962), and further, with a suitable
choice of values for ¢/N, the curve represented by Eq. 395 has served to
describe the course of learning. However, in experiments run with naive
subjects, as has been nearly always the case, the value of ¢/N required to
fit the mean learning curve has been substantially smaller than the value
required to handle the sequential statistics discussed in Sec. 2.1. Consider,
for example, the learning curve for the 0.6 series plotted by 20 trial blocks.
The observed value of P(1) is 0.48 and the value of ¢/N estimated from the
sequential statistics of the second 20-trial block is 0.12. With these param-
eter values, Eq. 395 yields a prediction of 0.59 for P(3) and the theoretical
curve is essentially at asymptote from block 4 on. The empirical learning
curve, however, does not approach 0.59 until block 6 and is still short of
asymptote at the end of 12 blocks, the mean proportion of A;-responses
over the last five blocks being 0.593 (Suppes & Atkinson, 1960, p. 197).

In the case of the 0.8 series there is a similar disparity between the value
of ¢/N estimated from the sequential statistics and the value estimated
from the mean learning curve. As we have already noted, an optimal
account of the trigram proportions Pr (4, , E; A, ,) requires a c/N-value
of approximately 0.17. But, if this estimate is substituted into Eq. 39a,
the predicted A,-frequency in the first block of 12 trials is 0.67, compared
to an observed value of 0.63, and the theoretical curve runs appreciably
above the empirical curve for another five blocks. A ¢/N-value of 0.06
yields a satisfactory graduation of the observed mean curve in terms of
Eq. 394, and a fit to the trigrams that does not look bad by usual standards
for prediction in learning experiments. However, comparing predictions
based on the two ¢/N-estimates for the trigrams that contain this param-
eter, we see that the estimate of 0.17 is distinctly superior. For the
trigrams averaged over the first 12 trials, the result is as follows:
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Observed Theoretical: ¢/N =0.17  Theoretical: ¢/N = 0.06

P12 0.168 0.177 0.144
Pian 0.061 0.073 0.087
Pore 0.121 0.119 0.152
Pen 0.062 0.053 0.039

The reason for this discrepancy in the value of ¢/N required to give
optimal descriptions of two different aspects of the data is not clear even
after much investigation. One contributing factor might be individual
differences in learning rates (c/N-values) among subjects; these would be
expected to affect the two types of statistics differently. However, in the
case of the 0.8 series, when a more homogeneous subgroup of subjects
(the middle 50 9 on total 4, frequency) is analyzed, the disparity, although
somewhat reduced, is not eliminated; optimal ¢/N-values for the mean
curve and the trigram statistics are now 0.08 and 0.15, respectively. The
principal source of the remaining discrepancy in this homogeneous sub-
group is a much smaller increment in A,-frequency from the first to the
second 12-trial block than is predicted. Over the first three blocks the
observed proportions are 0.633, 0.665, and 0.790; the proportions
predicted from Eq. 39a with ¢/N = 0.15 run 0.657, 0.779, and 0.800. A
possible explanation is that in the early part of the series the subjects are
responding to cues, perhaps verbal in character, which are discarded (i.e.,
are not resampled) when they fail to elicit consistently correct responding.
An interpretation of this sort could be incorporated into the model and
subjected to formal testing, but this has not yet been done. In any event,
we can see that analyses of data in terms of a model enables us to deter-
mine precisely which aspects of the subjects” behavior are and which are
not accounted for in terms of a particular set of assumptions.

Next to the mean learning curve, the most frequently used behavioral
measure in learning experiments is perhaps the variance of response
occurrences in a block of trials. Predicting this variance from a theoretical
model is an exceedingly taxing assignment; for the effects of individual
differences in learning rate, together with those of all sources of experi-
mental error not represented in the model, must be expected to increase
the observed response variance. However, this statistic is relatively easy
to compute for the pattern model, and the derivation may serve as a pro-
totype for derivations of similar expressions in other learning models.
For simplicity, we shall limit consideration here to the case of the variance
of A4;-response frequency in a trial block after the mean curve has reached
asymptote.

As a preliminary to computation of the variance, we require a statistic
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that is also of interest in its own right, the covariance of 4;-responses on
any two trials; that is,

= Pr (4y py2A1,) — Pr(dyn15) Pr(4y,,)- (40)

First, we can establish by induction that
c F—1
P (s piss) = 7 Pr(4y,) = b Pr(4s,) = Pr(yas ) (1= S

This formula is obviously an identity for X = 1. Thus, assuming that
the formula holds for trials » and »n + k, we may proceed to establish it
for trials n and n + k + 1. First we use our standard procedure to expand
the desired quantity in terms of reinforcing events and states of condition-
ing. Letting C; , denote the state in which exactly j of the N elements are
conditioned to response 4, we may write

Pr (A1, nip41d1,0) = E Pr (Ay i1 EinnCiniAi,n)
1,7
= 2 Pr (Al,n+k+1 ‘ Ei,n+kci,n+7cA1,n) Pr (Ei,n+7ccj,n+kA1,n)'
1,9

Now we can make use of the assumptions that specify the noncontingent
case to simplify the second factor to

7Pr (C; pizdr,,) and (1 = m) Pr(C; nyzAa,n)

for i = 1, 2, respectively. Also, we may apply the learning axioms to the
first factor to obtain

.2 . . .
J JIN[A=¢j e+ 1)
Pr (A1 nii1 | EvniaCinendrn) = N + (1 - N) { N J 4 N

c\Jj c
=(1=21L 4+ =
(=33

c\Jj
Pr (Ay,pir1 l E2,n+7cca‘,n+kA1,n) = (1 - ]—\;)N .

and

Combining these results, we have

Pr (Ay,pipr141,n)
-3 {{(1 - ﬁ)ﬁ + ﬂ +(1—m) (1 - ﬁ)ﬁ} Pr (Cjni31,0)
= g {(1 - ﬁ)# + ']%} Pr (C;,pirA1,n)

c c
= (1 — =) Pr (41, 4x41,,) + 7= Pr(A4;,).
( N) (1,+k1,) 7TN (1,)
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Substitution into this expression in terms of our inductive hypothesis
yields

Pr (Ayp pe1dy) = (1 _ N) {w Pr(4,,) — [ Pr(Ay,,) — Pr (A ,.14s )]
c V1! c
: (1 - N) } o Pr (4,)

%
=7 Pr(4;,,) — [7 Pr(4y,,) — Pr(4,,,.14,,)] (1 - ﬁ) )

as required.

We wish to take the limit of the right side of Eq. 40 as # — oo in order
to obtain the covariance of the response random variable on any two
trials at asymptote. The limits of Pr (4,,,) and Pr (4, ,,;) we know to be
equal to 7, and from Eq. 35 we have the expression

7% + 7(1 — [ — ¢)/N].
for the limit of Pr (4, ,.,4, ,). Making the appropriate substitutions in
Eq. 40, yields the simple result

lim Cov (A, ;A,) = 7* — [772 -7t —a(l —7) u;cil (1 - ﬁ)k—l— ?
na N N
—md=ml—0 (1 - E)H‘ (41)
N N
Now we are ready to compute Var (Ag), the variance of A;-response
frequencies in a block of K trials at asymptote, by applying the standard
theorem for the variance of a sum of random variables (Feller, 1957):

-1 K
Var (Ag) = lim |:K Var (A,) + 23 3 Cov (A, +,.A,LH)]
=1 j=2
.
mee limEA,D) =71+ (1 —m)-0=m,

the limiting variance of A,, is simply

limVar (A,) =1lim E(A,?) —1lim E(A,)* = 7 — =°.
Substituting this result and that for lim Cov (A, ,A,) into the general
expression for Var (Ag), we obtain

Var (Ag) = Kn(1 — ) + 2%1 %’Ml;c) (1 _ _C'_)j_i—l

e e S (N

Application of this formula can be conveniently illustrated in terms
of the asymptotic data for the 0.8 series. Least-squares determinations
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of ¢/N and N from the trigram proportions (using Eq. 34a-d) yielded
estimates of 0.17 and 1.84, respectively. Inserting these values into Eq. 42,
we obtain for a 48-trial block at asymptote Var (Ag) = 37.50; this
variance corresponds to a standard deviation of 6.12. The observed
standard deviation for the final 48-trial block was 6.94. Thus the theory
predicts a variance of the right order of magnitude but, as anticipated,
underestimates the observed value.

From the many other statistics that can be derived from the N-element
model for two-choice learning data, we take one final example, selected
primarily for the purpose of reviewing the technique for deriving sequential
statistics. This technique is so generally useful that the major steps should
be emphasized: first, expand the desired expression in terms of the con-
ditioning states (as done, for example, in the case of Eq. 30); second,
conditionalize responses and reinforcing events on the preceding sequence
of events, introducing whatever simplifications are permitted by the
boundary conditions of the case under consideration; third, apply the
axioms and simplify to obtain the appropriate result. These steps are now
followed in deriving an expression of considerable interest in its own right
—the probability of an 4,-response following a sequence of exactly » E;
reinforcing events:

PI’ (Al,n+v | El,n+v—1 oo El,nEz,n—l)
= _v—_-]:‘— Pr (Al,n+vE1,n+v—1 LR El,nEZ,n—l)
(1 —m)
1

= m E Pr (Al n+vvi, n+vE1 nty—1 ¢+ El,nEZ,n—lcj,n—l)
- %9

1
= N z Pr (Al n+v l Ci,n+vE1,n+v—1 . El,nE2,n—1Cj,n—1)
(1 - 7T) )
- Pr (Ci,n+v | El,n+v—1 e El,nE%'n—le,n—l)
‘- Pr (El ntr—1" " El,nEZ,n—l | Cj,n—l) Pr (Cj,'n—-l)
i
= Z N Pr (Cz. nty | Ejpivr--- El,nEZ,n——lcj,n—l) Pr(C; 1)
%)

Sl-cl-0-40-5)
Tt (g e
- -4 T b o e
N Ly

[ -5
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The derivation has a formidable appearance, mainly because we have
spelled out the steps in more than customary detail, but each step can
readily be justified. The first involves simply using the definition of a
conditional probability, Pr (4 [ B) = Pr (4B)/Pr (B), together with the
fact that in the simple noncontingent case Pr (Ey,,) = mand Pr(E,,) =
1 — 7 for all n and Pr (E, ,,,, ;... E; wEs 1) = 7°(1 — o). The second
step introduces the conditioning states C, ,,, and C;,_;, denoting the
states in which i elements are conditioned to A4, on trial # + » and j
elements on trial 7 — 1, respectively. Their insertion into the right-hand
expression of line 1 is permissible, since the summation of Pr (C,) over all
values of 7 is unity and similarly for the summation of Pr (C;). The third
step is based solely on repeated application of the defining equation
for a conditional probability, which permits the expansion

Pr(ABC...J)=Pr(4|BC...))Pr(B|C...J)...Pr(J).

The fourth step involves assumptions of the model: the conditionalization
of 4, ,,,on the preceding sequence can be reduced to Pr (Ay 1y I Ciniy) =
i[N, since, according to the theory, the preceding history affects response
probability on a given trial only insofar as it determines the state of con-
ditioning, that is, the proportion of elements conditioned to the given re-
sponse. The decomposition of
Pr (El,nﬂ_1 o By By 4Gy, ) into 7’(1 — ) Pr (Cm_l)
is justified by the special assumptions of the simple noncontingent case.
The fifth step involves calculating, for each value of j on trial n — 1, the
expected proportion of elements conditioned to 4, on trial n + ».
There are two main branches to the process, starting with state C; on
trial n — 1. In one, which by the axioms has probability 1 — ¢(j/N), the
state of conditioning is unchanged by the E,-event on trial n — 1; then,
applying Eq. 37 with = = 1 (since from trial » onward we are dealing with
a sequence of £,’s) and Pr (4, ;) = j/N, we obtain the expression
{1 =1 = /M = (/M)

for the expected proportion of elements connected to A, on trial n + »
in this branch. In the other branch, which has probability c(j/N), applica-
tion of Eq. 37 with 7 = 1 and Pr (411) = (j — 1)/N yields the expression
{1—[1—(@G— /N — ¢/N)’} for the expected proportion of elements
connected to 4; on trial n + ». Carrying out the summation over j and

using the by-now familiar property of the model that
N

S % Pr(C;, 1) = Pr(4y, 1) = pp

i=o
we finally arrive at the desired expression for probability of 4, following
exactly » Ey’s.



MULTI-ELEMENT PATTERN MODELS 179

Application of Eq. 43 can conveniently be illustrated in terms of the 0.8
series. Using the estimate of 0.17 for ¢/N (obtained previously from the
trigram statistics) and taking p, ; = 0.83 (the mean proportion of A4;-
responses over the last 96 trials of the 0.8 series), we can compute the
following values for the conditional response proportions:

v ' 0 1 2 3 4

Theoretical 0.689 0.742 0.786  0.822 0.852
Observed 0.695 0.787 0.838 0.859 0.897

It can be seen that the trend of the theoretical values represents quite well
the trend of the observed proportions over the last 96 trials. Somewhat
surprisingly, the observed proportions run slightly above the predicted
values. There is no indication here of the “negative recency effect”
(decrease in A;-proportion with increasing length of the E;-sequence)
reported in a number of published two-choice studies (e.g., Jarvik, 1951 ;
Nicks, 1959). It may be significant that no negative recency effect is
observed in the 0.8 series, which, it will be recalled, involved well-practiced
subjects who had had experience with a wide range of #-values in preceding
series. However, the effect is observed in the 0.6 series, conducted with
subjects new to this type of experiment (cf. Suppes & Atkinson, 1960,
pp. 212-213). This differential result appears to support the idea (Estes,
1962) that the negative recency phenomenon is attributable to guessing
habits carried over from everyday life to the experimental situation and
extinguished during a long training series conducted with noncontingent
reinforcement.

We shall conclude our analysis of the N-element pattern model by
proving a very general ‘“‘matching theorem.” The substance of this
theorem is that, so long as either an E; or an E, reinforcing event occurs
on each trial, the proportion of A;-responses for any individual subject
should tend to match the proportion of Ej-events over a sufficiently long
series of trials regardless of the reinforcement schedule.

For purposes of this derivation, we shall identify by a subscript «
the probabilities and events associated with the individual z in a popula-
tion of subjects; thus p,, , will denote probability of an A;-response by
subject x on trial n, and E, , and A, , will denote random varjables
which take on the values 1 or O according as an E;-event and an A;-
response do or do not occur in this subject’s protocol on trial n. With this
notation, the probability of an A;-response by subject x on trial n + 1
can be expressed by the recursion

C
Pu1,n+1 = Pain + N (Ewl,n - Aml,n)' (44)
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The genesis of Eq. 44 should be reasonably obvious if we recall that
Pa,x 1s equal to the proportion of elements currently conditioned to the
Aj-response. This proportion can change only if an Ej-event occurs on a
trial when a stimulus pattern conditioned to A, is sampled, in which case
Ejyn—Au,=1—0=1, or if an E,-event occurs on a trial when a
pattern conditioned to A, is sampled, in which case

E

In the first case the proportion of patterns conditioned to 4, increases
by 1/N if conditioning is effective (which has probability ¢) and in the
second case this proportion decreases by 1/N (again with probability c).

Consider now a series of, say, n* trials: we can convert Eq. 44 into an
analogous recursion for response proportions over the series simply by
summing both sides over » and dividing by n*, namely,

i — Ay, =0—1=—1

,n. 1 n* 1 c ,n#
;; nzlpa;l,n+1 = E" lemlm + E N gl(Ewl,n - Axl,n)‘

Now we subtract the first sum on the right from both sides of the equation
and distribute the second sum on the right to obtain

*

*
pwl,n+1 - pwl,l . ’1 4 < 1 c %
- . = . xl,n T T xl,n*
n* n* N n=1 n* N »=1

The limit of the left side of this last equation is obviously zero as n* — oo;
thus taking the limit and rearranging we have?

*

.1
lel,n = lim T zlel,n' (45)

n*->0 N* n=

lim ——1—

n*—o N¥ 5

® Equation 45 holds only if the two limits exist, which will be the case if the reinforcing
event on trial n depends at most on the outcomes of some finite number of preceding
trials. When this restriction is not satisfied, a substantially equivalent theorem can be
derived simply by dividing both sides of the equation immediately preceding by
15

o Z E,,,, before passing to the limit; that is
n=1

—'n*———'— —_— T T T
zlel,'n z Eml,n
n=

Except for special cases in whieh the sum in the denominators converges, the limit of

the left-hand side is zero and
n’

Awl’n
n=1

lim ——— = 1.

n*— 0
z Ezl’n
n=1
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To appreciate the strength of this prediction, one should note that it
holds for the data of an individual subject starting at any arbitrarily selected
point in a learning series, provided only that a sufficiently long block of
trials following that point is available for analysis. Further, it holds regard-
less of the values of the parameters N and c (provided that c is not zero) and
regardless of the way in which the schedule of reinforcement may depend
on preceding events, the trial number, the subject’s behavior, or even events
outside the system (e.g., the behavior of another individual in a competitive
or cooperative social situation). Examples of empirical applications of this
theorem under a variety of reinforcement schedules are to be found in
studies reported by Estes (1957a) and Friedman et al. (1960).

2.3 Analysis of a Paired-Comparison Learning Experiment

In order to exhibit a somewhat different interpretation of the axioms
of Sec. 2.1, we shall now analyze an experiment involving a paired-com-
parison procedure. The experimental situation consists of a sequence of
discrete trials. There are r objects, denoted 4, (i = 1 to r). On each trial
two (or more) of these objects are presented to the subject and he is re-
quired to choose between them. Once his response has been made the
trial terminates with the subject winning or losing a fixed amount of money.
The subject’s task is to win as frequently as possible. There are many aspects
of the situation that can be manipulated by the experimenter; for example,
the strategy by which the experimenter makes available certain subsets of
objects from which the subjects must choose, the schedule by which the
experimenter determines whether the selection of a given object leads to a
win or loss, and the amount of money won or lost on each trial.

The particular experiment for which we shall essay a theoretical analysis
was reported by Suppes and Atkinson (1960, Chapter 11). The problem
for the subjects involved repeated choices from subsets of a set of three
objects, which may be denoted A4;, 4,, and A;. On each trial one of the
following subsets- of objects was presented: (A4,4,), (4;A4;), (A;.43), or
(A4,4,435). The subject selected one of the objects in the presentation set;
then the trial terminated with a win or a loss of a small sum of money.
The four presentation sets (A4;A4,), (4;A43), (4s45), and (4;4,4,) occurred
with equal probabilities over the series of trials. Further, if object A4;
was selected on a trial, then with probability A, the subject lost and with
probability 1 — 2, he won the predesignated amount. More complex
schedules of reinforcement could be used; of particular interest is a sched-
ule in which the likelihood of a win following the selection of a given object
depends on the other available objects in the presentation group. For
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example, the probability of a win following an A4, choice could differ,
depending on whether the (4;4,), (4,45), or (4;4,A4,) presentation group
occurred. The analysis of these more complex schedules does not introduce
new mathematical problems and may be pursued by the same methods we
shall use for the simpler case.

Before the axioms of Sec. 2.1 can be applied to the present experiment,
we need to provide an interpretation of the stimulus situation confronting
the subject from trial to trial. The one we select is somewhat arbitrary
and in Sec. 3 alternative interpretations are examined. Of course, dis-
crepancies between predicted and observed quantities will indicate ways
in which our particular analysis of the stimulus needs to be modified.

We represent the stimulus display associated with the presentation of
the pair of objects (4;4,) by a set S,; of stimulus patterns of size N; the
triple of objects (4,4,45) is represented by a set of stimulus patterns Si,5
of size N*. Thus there are four sets of stimulus patterns, and we assume
that the sets are pairwise disjoint (i.e., have no patterns in common).
Since, in the model under consideration, the stimulus element sampled on
any trial represents the full pattern of stimulation effective on the trial,
one might wonder why a given combination of objects, say (4,4,), should
have more than one element associated with it. It might be remarked in
this connection that in introducing a parameter N to represent set size
we do not necessarily assume N > 1. We simply allow for the possibility
that such variations in the situation or different orders of presentation of the
same set of objects on different trials might give rise to different stimulus
patterns. The assumption that the stimulus patterns associated with a
given presentation set are pairwise disjoint does not seem appealing on
common-sense grounds; nevertheless, it is of interest to see how far we
can go in predicting the data of a paired-comparison learning experiment
with the simplified model incorporating this highly restrictive assumption.
Even though we cannot attempt to handle the positive and negative transfer
effects that must occur between different members of the set of patterns
associated with a given combination of objects during learning, we may
hope to account for statistics of asymptotic data.

When the pair of objects (4,4,) is presented, the subject must select
A; or 4; (i.e., make response A4; or 4,); hence all pattern elements in S,
become conditioned to A, or A4;. Similarly, all elements in S,,, become
conditioned to 4, A, or A;. When (4,4,) is presented, the subject
samples a single pattern from S, and makes the response to which the
pattern is conditioned.

The final step, before applying the axioms of Sec. 2.1, is to provide an
interpretation of reinforcing events. Our analysis is as follows: if (4,4,) is
presented and the A,-object is selected, then (a) the E, reinforcing event
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occurs if the 4,-response is followed by a win and (b) the E;-event occurs
if the A,-response is followed by a loss. If (4;4;4,) is presented and the
Aj-object is selected, then (a) the E;-event occurs if the A,-response is
followed by a win and (b) E; or E, occurs, the two events having equal
probabilities, if the A4,-response is followed by a loss. This collection of
rules represents only one way of relating the observable trial outcomes to
the hypothetical reinforcing events. For example, when 4, is selected
from (4,4,4,) and followed by a loss, rather than having E; or E, occur
with equal likelihoods one might postulate that they occur with probabili-
ties dependent on the ratio of wins following A,-responses to wins follow-
ing A,-responses over previous trials. Many such variations in the rules
of correspondence between trial outcomes and reinforcing events have
been explored; these variations become particularly important when the
experimenter manipulates the amount of money won or lost, the magnitude
of reward in animal studies, and related variables (see Estes, 1960b;
Atkinson, 1962; and Suppes & Atkinson, 1960, Chapter 11, for dis-
cussions of this point).
In analyzing the model we shall use the following notation:

A{?) = occurrence of an A response on the nth presentation of
(4,4;) [note that the reference is not to the nth trial of the
experiment but to the nth presentation of (4,4,)].

W." = a win on the nth presentation of (4,4,).

L{? = aloss on the nth presentation of (4,4,).

We now proceed to derive the probability of an A,-response on the
nth presentation of (4,4;); namely Pr (4{7). First we note that the state
of conditioning of a stimulus pattern can change only when it is sampled.
Since all of the sets of stimulus patterns are pairwise disjoint, the sequence
of trials on which (4,4;,) is presented forms a learning process that may be
studied independently of what happens on other trials (see Axiom C4); that
is, the interspersing of other types of trials between the nth and (n 4+ 1)st
presentation of (4,4,) has noeffect on the conditioning of patterns in set S;.

We now want to obtain a recursive expression for Pr(4{%). This
can be done by using the same methods employed in Sec. 2.2. But, to
illustrate another approach, we proceed differently in this case.

Let Pr(4{%) =y, and Pr(4{?) =1 —y,. The possible changes in
Yy, are given in Fig. 6. With probability 1 — ¢ no change occurs in
conditioning, regardless of trial events, hence y,,,, = ¥,,; with probability
¢ change can occur. If 4, occurs and is followed by a win, then the sampled
element remains conditioned to 4,; however, if a loss occurs, the sampled
element (which was conditioned to A4,) becomes conditioned to A; and
thus y,., =y, — I/N. If 4; occurs and is followed by a win, then
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Yni1 = Y, however, if it is followed by a loss, the sampled element (which
was conditioned to 4,) becomes conditioned to 4;, hencey, ., = y, + 1/N.
Putting these results together, we have

1
+lelt = 1)1 = 2]+ (1 + ]l = )2
which simplifies to the expression
c C
Yo = | L= £ G+ )| + S (46)
Solving this difference equation, we obtain
A; [ A (")}[ ¢ ) Jn_l
— —Pr ¥ |1 — =0+ 4 . (47
T e s SO+ )| @
We now consider Pr(4{2¥); for simplicity let o, = Pr(4{'2?),
B, = Pr(4$%), and 1 — a, — f, = Pr (4{2¥). The possible changes in
«, are given in Fig. 7. For example, on the bottom branch conditioning

is effective and an As-response occurs which leads to a loss; hence E; or
E, occur with equal probabilities. But an A4; followed by E; makes

Pr (A{)) =

Yne1=n

=y —-L
yn+1"yn N

= 1
yn+1-y"+N

Fig. 6. Branching process for a diad probability on a paired comparison
learning trial.
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Qp41 = On
®Xp41= Cn

—a, =L
Qp41= A~ p&
Xp41 = An

a4 L
An41=Cnt
®py1=Cn
=an

n+l

QApyy=ant g

Cpy1= Cn

Fig. 7. Branching process for a triad probability on a paired comparison
learning trial.
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opyq = %, + 1/N, and 4; followed by E, makes «,,; = «,. Combining

the results in this figure yields the following difference equation:
s = (L = Oty + el = 2]+ (0 = ) o)

+alef(1l — 2] + ( + Ni) (cBuia ) + an(chuls })

+afe — a, — A1 — 2] + ( + Ni) [e(1 — o, — B,y ]

+ O("[C(l — %y = 13%)/13 %]
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Simplifying this result, we obtain

C C (4
tus = 1= S @ 7| + B3 e = 2 5

2. (48a)
By a similar argument we obtain

C C C
ﬁ’n-f—l ﬁn!: - ﬁ (22, + 13)} + o, _Z—R/—* (A — 4y + _ﬁ‘ As.  (48b)

Solutions for the pair of difference equations given by Eqs. 48a and 48b
are well known and can be obtained by a number of different techniques
(see Goldberg, 1958, pp. 130-133, or Jordan, 1950). Any solution pre-
sented can be verified by substituting into the appropriate difference
equations. However for now we shall limit consideration to asymptotic
results. In terms of the Markov chain property of our process it can be
shown that the limits «. = lim o, and 8 = hm B, exist. Letting a, ., =

N—> 00

«, = o and §,., = f, = p in Eqs. 48a and 48b we obtain
(2 + 4) = f(la — 45) + 45
BQRAy + A3) = oAy — 43) + As.

Solving for o and # and rewriting, we have

lim Pr(A0%) = Lo : (49a)
v Tty + Ay + Aol
lim Pr(492)) = — Aty , (49b)
n—=oo llAg =+ /11}.3 + 22}{3

and
lim Pr(43%) = /}122 ) (49¢)
oo Tty + Auds + Aols

The other moments of the distribution of response probabilities can
be obtained by following the methods employed in Sec. 2.1; and at
asymptote we can generate the entire distribution. In particular, for set
S;; the asymptotlc probability that k patterns are conditioned to 4; and
N k to A; is simply

(N) ( Zj )70( j’z )N—k
k)\2,+ 2, \a+ 4/

For the set S;,; the asymptotic probability of k; patterns conditioned to
Ay, ko to Ay, and ky to Ay (where ky + ky + ky = N*) is
N*! ( 1
kylky kg \AyAy + 2ihs + Aodg

N*
) Gt atudare.
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In analyzing data it is helpful also to examine the marginal limiting
probability of an Aresponse, Pr (4,), in addition to the other quantities
already mentioned. We define Pr (4,) as the probability of an A,-response
on any trial (regardless of the stimulus display) once the process has
reached asymptote. Theoretically

Pr (4;) = Pr(A£2) Pr(D") + Pr(ALZ) Pr(D®?) 4 Pr(4L5) Pr (D),
Pr (4y) = Pr(A4y2) Pr(D") + Pr(4g%) Pr(D®) + Pr(4y%) Pr(D"*),

and Pr(4s) = | — Pr (4) — Pr (4y),

where Pr (D7) is the probability of presenting the pair of objects (A4,4,).

The experimental results we consider were reported in preliminary form
in Suppes & Atkinson (1960). Two groups, each involving 48 subjects,
were run; subjects in one group won or lost one cent on each trial, and
those in the other group won or lost five cents on each trial. We shall
consider only the one-cent group, for an analysis of the differential effects
of the two reward values requires a more elaborate interpretation of rein-
forcing events. Subjects were run for 400 trials with the following rein-
forcement schedule:

Ay o= £ /’12 = %, Aa = %

Figure 8 presents the observed proportions of A4;-, A5, and As-responses
in successive 20-trial blocks. The three curves appear to be stable over the
last 10 or so blocks; consequently we treat the data over trials 301 to
400 as asymptotic.

By Eq. 47 and Eq. 49a-c we may generate predictions for Pr (4{%))
and Pr (4{'%)). Given these values and the fact that the four presentation
sets occur with equal probabilities, we may, as previously shown, generate

D=0 Pr (A1)
——oPr(4y)
O———0Pr(As)

AN S I [N N A SO O U S N N N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Blocks of 20 trials

Fig. 8. Observed proportion of 4;-responses in successive 20-trial blocks for
paired comparison experiment.

Observed proportions
o
w

o
n
I

0.1
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predictions for Pr(4; ,). The predicted values for these quantities and
the observed proportions over the last 100 trials are presented in Table 4.
The correspondence between predicted and observed values is very good,
particularly for Pr (4, ,) and Pr(4{%)). The largest discrepancy is for
the triple presentation set, in which we note that the observed value of
Pr (4{%3)) is 0.041 above the predicted value of 0.507. The statistical
problem of determining whether this particular difference is significant
is a complex matter and we shall not undertake it here. However, it

Table 4 Theoretical and Observed Asymptotic Choice Proportions
for Paired-Comparison Learning Experiment

Predicted Observed

Pr (4,) 0.464 - 0.473
Pr (4,) 0.302 0.294
Pr (45) 0.234 0.233
Pr (4(1%) 0.643 0.651
Pr (A{®) 0.706 0.700
Pr (4®) 0.571 0.561
Pr (A1) 0.507 0.548
Pr (4%) 0.282 0.258
Pr (4{!%®) 0.211 0.194

should be noted that similar discrepancies have been found in other
studies dealing with three or more responses (see Gardner, 1957; Detam-
bel, 1955), and it may be necessary, in subsequent developments of the
theory, to consider some reinterpretation of reinforcing events in the
multiple-response case.

In order to make predictions for more complex aspects of the data, it is
necessary to obtain estimates of ¢, N, and N*. Estimation procedures of
the sort referred to in Sec. 2.2 are applicable, but the analysis becomes
tedious and such details are not appropriate here. However, some com-
parisons can be made between sequential statistics that do not depend on
parameter values. For example, certain nonparametric comparisons can
be made between statistics where each depends on ¢ and N but where the
difference is independent of these parameters. Such comparisons are
particularly helpful when they permit us to discriminate among different
models without introducing the complicating factor of having to estimate
parameters.

To indicate the types of comparisons that are possible, we may consider
the subsequence of trials on which (4,4,) is presented and, in particular,

the expression (12)
(12) 4 (12)yy (12) 4(12) .
PI' (Al,n+1 I Wn Al,n Wn——lA2,n—1 s



MULTI-ELEMENT PATTERN MODELS 189

that is, the probability of an A;-response on the (n + 1)st presentation of
(A,45), given that on the nth presentation of (4,4,) an 4, occurred and was
followed by a win and that on the (n — 1)st presentation of (4,4,) an 4,
occurred, followed by a win. To compute this probability, we note that

Pr (A(12) 1W(12)A(12)W(12)A (12)1)

1.

Pr (W(IZ)A(12)W(12)A512)
n—1

Now our problem is to compute the two quantities on the right-hand side
of this equation. We first observe that

(12) (12) (12) (12) 4(12) \ __
Pr (Al,n+1| WAy WoiAds ) =

Pr (A112)+1W(12)A(12)W(12 A(lz)
R
— z Pr (Agizrlc(li)ﬂqW(H)A(m)W(12)1‘1;1:)_16'1(,1”2_)1)
k2%
where C{"? denotes the conditioning state for set S, in which i elements
are condltloned to 4; and N — i to A, on the nth presentation of (A4,4,).
Conditionalizing and applying the axioms, we may expand the last expres-
sion into
S Pr (A2 | CY2h) Pr (CY2ka | WERATEW ALY 0,
%)
‘(1 —4)Pr (A(lz) l W(lz)Aélz)—lcz(lnz—)l)(l — 4s)
- Pr (Aélfz)—1 I Cﬁ?)ﬂ Pr(cz(wle—)l)
Further, the sampling and response axioms permit the simplifications
Pr (A1 ' Cim) = A )
N
Pr (A2 | WAL ) = L
and N

— 1
Pr (A(l —1 l C(zlﬁ) =

Finally, in order to carry out the summation, we make use of the relation

1 for i=j
(12) (12) 4 (12)7y7 (12) 4(12) (12) \ __
Pr (Cha | WP ALRW AL Cilt) = {0 for i o],

which expresses the fact that no change in the conditioning state can occur
if the pattern sampled leads to a win (see Axiom C2). Combining these
results and simplifying, we have

Pr (Agiier(lz)A(lz)W(l ;15)_1)
= =m0 =23 (L (Y= prciy. 00
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Similarly, we obtain
Pr (W(lz)Aim)W(m;A;m) .
n N n—, , N—
i (N—i
= (=i = w34 (M) e, on)

and, finally, taking the quotient of the last two expressions,

S (& (=) e
Pr(AfS | Wi AT WAL ) = N - (500)
T e
We next consider the same sequential statistic but with the responses
reversed on trials n and n — 1; namely,

12 12) 4(12) 7 (12) 4(12
Pr (A(l,n)+1 ’ Wr(z )A(2,n) WrE—I)A(l,n)—l)
Interestingly enough, if we compute
(12) (12) 4 (12)757 (12) 4 (12)
Pr (A1,7L+1 W Az,n W,5A 1)

1,n—

(12) 4 (12)py7 (12) 4 (12)
Pr (W, Ay W o341 1)

they turn out to be expressed by the right sides of Eq. 50a and 50b, re-
spectively. Hence, for all ,
Pr(Agly | WP ATDW 8457 )
= Pr (A0 | WA WAL ). (S1)
Comparable predictions, of course, hold for the subsequences of trials
on which (A4,A45) or (4,43) are presented.

Equation 51 provides a test of the theory which does not depend on
parameter estimates. Further, it is a prediction that differentiates between
this model and many other models. For example, in the next section we
consider a certain class of linear models, and it can be shown that they
generate the same predictions for the quantities in Table 4 as the pattern
model. However, the sequential equality displayed in Eq. 51 does not hold
for the linear model.

To check these predictions, we shall utilize the data over all trials of the
(4,4,) subsequence and not restrict the analysis to asymptotic perform-
ance. Specifically, we define

_ (12) y(12) 4(12) g7 (12) 4(12)
(112 = E Pr (4,11 W5 Ay n Watids 1)
n

and

— (12) (12) 4 (12) g7 (12) 4(12)
Lin = Z Pr (4 Ws A5, Wn—lAl,n—l)
n
— (12) 4(12)yy7 (12) 4(12)
Clz - Z Pr (Wn Al,n Wn—lAz,n—l)
n
_ (12) 4(12) 7 (12) 4(12)
CZI - Z PI' (W'n Az,n Wn—lAl,n—l)'
n
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But by the results just obtained we have {;5; = {3, and {y; = ;, for any
given subject. Further, if we define Z”k as the sum of the {;;’s over all
subjects, then it follows that (;, = {15, independent of intersubject
differences in ¢ and N. Similarly, {;; = {,. Thus we have a set of pre-
dictions that are not only nonparametric but that require no restrictive
assumptions on variability between subjects. Observed frequencies
corresponding to these theoretical quantities are as follows:

6121 = 140 Zuz = 138
521 = 243 Z12 = 244
@3 = (0.576 Cle = 0.566.

C21 12

Similarly, for the (4;4;) subsequence,

5131 = 67 Zns = 64
Z31 = 120 513 = 122

Go_gsss G gss.

31 13

Finally, for the (4,45) subsequence,

5232 =45 ézza = 49

Zaz = 82 Zza = 87
Q.zg_z = (0.549 ZL% = 0.563.
oo 23

Further analyses will be required to determine whether the pattern
model gives an entirely satisfactory interpretation of paired-comparison
learning. It is already apparent, however, that it may be difficult indeed
to find another theory with equally simple machinery that will take us
further in this direction than the pattern model.

3. A COMPONENT MODEL FOR STIMULUS
COMPOUNDING AND GENERALIZATION

3.1 Basic Concepts; Conditioning and Response Axioms

In the preceding section we simplified our analysis of learning in terms
of the N-element pattern model by assuming that all of the patterns
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involved in a given experiment are disjoint or, at any rate, that generaliza-
tion effects from one stimulus pattern to another are negligible. Now
we shall go to the other extreme and treat problems of simple transfer of
training between different stimulus situations that have elements in com-
mon, and make no reference to a learning process occurring over trials.
Again the basic mathematical apparatus is that of sets and elements but with
a reinterpretation that needs to be clearly distinguished from that of the
pattern model. In Secs. 1 and 2 we regarded the pattern of stimulation
effective on any trial as a single element sampled from a larger set of such
patterns; now we shall consider the trial pattern as itself constituting a
set of elements, the elements representing the various components or
aspects of the stimulus situation that may be sampled by the subject in
differing combinations on different trials. We proceed first to give the
two basic axioms that establish the dependence of response probability
on the conditioning state of the stimulus sample. Then some theorems
that specify relationships between response probabilities in overlapping
stimulus samples are derived and are illustrated in terms of applications
to experiments on simple stimulus compounding. Consideration of the
process by which trial samples are drawn from a larger stimulus population
is deferred to Sec. 3.3.
The basic axioms of the component model are as follows:

Basic Axioms

Cl. The sample s of stimulation effective on any trial is partitioned into
subsets s; (i = 1,2, .. .r, wherer is the number of response alternatives),
the ith subset containing the elements conditioned to (or ““connected to”’)
response A;.

C2. The probability of response A; in the presence of the stimulus sample
s is given by

Pr(4,] 9 = X0,

N(s)

where N(x) denotes the number of elements in the set x.

In Axiom C1 we modify the usual definition of a partition to the extent
of permitting some of the subsets to be empty; that is, there may be some
response alternatives that are conditioned to none of the elements of s.
We do mean to assume, however, that each element of s is conditioned to
exactly one response. The substance of Axiom C2 is, then, to make the
probability that a given response will be evoked by s equal to the propor-
tion of elements of s that are conditioned to that response.
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3.2 Stimulus Compounding

An elementary transfer situation arises if two responses are reinforced,
each in the presence of a different stimulus sample, and all or part of one
sample is combined with all or part of the other to form a new test situa-
tion. To begin with a special case, let us consider an experiment conducted
in the laboratory of one of the writers (W.K.E.).® In one stage of the
experiment a number of disjoint samples of three distinct cues drawn from
a large population were used as the stimulus members of paired-associate
items, and by the usual method of paired presentation one response was
reinforced in the presence of some of these samples and a different response
in the presence of others. The constituent cues, intended to serve as the
empirical counterparts of stimulus elements, were various typewriter
symbols, which for present purposes we designate by small letters g, b, c,
etc.; the responses were the numbers “one’” and ‘“‘two,” spoken aloud.
Instructions to the subjects indicated that the cues represented symptoms
and the numbers diseases with which the symptoms were associated.
Following the training trials, new combinations of ‘“‘symptoms” were
formed, and the subjects were instructed to make their best guesses at the
correct diagnoses.

Suppose now that response A4; had been reinforced in the presence of
the sample (abc) and response A, in the presence of the sample (def).
If a test trial were given subsequently with the sample (abd), direct applica-
tion of Axiom C2 yields the prediction that response 4, should occur with
probability §. Similarly, if a test were given with the sample (ade),
response A4; would be predicted to occur with probability 4. Results
obtained with 40 subjects, each given 24 tests of each type, were as follows:

percentage overlap of training and test sets ~ 0.667  0.333
percentage response 1 to test set 0.669  0.332

Success in bringing off a priori predictions of this sort depends not only
on the basic soundness of the theory but also on one’s success in realizing
various simplifying assumptions in the experimental situation. As we
have mentioned, it was our intention in designing this experiment to
choose cues, a, b, c, etc., which would take on the role of stimulus elements.
Actually, in order to justify our theoretical predictions, it was necessary
only that the cues behave as equal-sized sets of elements. To bring out the

® This experiment was conducted at Indiana University with the assistance of Miss
Joan SeBreny.
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importance of the equal N assumption, let us suppose that the individual
cues actually correspond to sets s,, s,, etc., of elements. Then, given the
same training (response A4, reinforced to the combination abc and response
A, to def) and assuming the training effective in conditioning all elements
of each subset to the reinforced response, application of Axiom C2 yields
for the probability of response 4, to abd

N,+ N,
N,+N,+ N,’
where we have used the obvious abbreviation N(s;) = N,. This equation
reduces to Pr (4, | 5,5,5,) = }if N, = N, = N,.

In this experiment we depended on common-sense considerations to
choose cues that could be expected to satisfy the equal-N requirement and
also counterbalanced the design of the experiment so that minor deviations
might be expected to average out. Sometimes it may not be possible to
depend on common-sense considerations. In that case a preliminary
experiment can be utilized to check on the simplifying assumptions.
Suppose, for example, we had been in doubt as to whether cues a and b
would behave as equal-sized sets. To check on them, we could have run a
preliminary experiment in which we reinforced, say, response 4, to a
and response A4, to b, then tested with the compound ab. Probability of
response A4, to ab is, according to the model, given by
_Ne
N,+ N,’
which should deviate in the appropriate direction from % if N, and N,
are not equal. By means of calibration experiments of this sort sets of
cues satisfying the equal-N assumption can be assembled for use in further
research involving applications of the model.

The expressions we have obtained for probabilities of response to stimu-
lus compounds can readily be generalized with respect both to set sizes and
to level of training. Suppose that a collection of cues a, b, c, . .. corre-
sponds to a collection of stimulus sets s,, 5, S, . . . of sizes N, Ny, N, . ..
and that some response A4; is conditioned to a proportion p,; of the
elements in s,, a proportion p,; of the elements in s,, and so on. Then
probability of response A; to a compound of these cues is, by Axiom C2,
expressed by the relation

Pr (All SaSpSa) =

Pr (4] s,5,) =

)=Napaj+Nbpbi+Ncpca'+"' (52)
N+ N,+ N, + ...
Application of Eq. 52 can be illustrated in terms of a study of probabil-
istic discrimination learning reported in Estes, Burke, Atkinson, & Frank-
mann (1957). In this study the individual cues were lights that differed

Pr (A, | S4 Sp» Ses - - -
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from each other only in their positions on a panel. The first stage of the
experiment consisted in discrimination training according to a routine
that we shall not describe here except to say that on theoretical grounds it
was predicted that at the end of training the proportion of elements in a
sample associated with the ith light conditioned to the first of two alter-
native responses would be given by p,; = i/13. Following this training,
the subjects were given compounding tests with various triads of lights.
Considering, say, the triad of lights 1, 2, and 3, the values of p;, should be
Pu = 13, Pa1 = 13, and pg = 4, assuming N; = N, = N, = N, and
substituting these values into Eq. 52, we obtain

N/13 4+ 2N/13 + 3N/13 _ 2
3N 13

=0.15

Pr(4,]1,2,3) =

as the predicted probability of response 1 to the compound 1, 2, 3. Theo-
retical values similarly computed for a number of triads are compared with
the empirical test proportions reported by Estes et al. in Table 5.

Table 5 Theoretical and Observed Proportions of Response 4, to
Triads of Lights in Stimulus Compounding Test

Triad Theoretical Observed
1,2,3 0.15 0.22
4,5,6 0.38 0.31
1,3, 11 0.38 0.41
7,8,9 0.62 0.59
2,10, 12 0.62 0.58
10, 11, 12 0.85 0.77

An important consideration in applications of models for stimulus
compounding is the question whether the experimental situation contains
an appreciable amount of background stimulation in addition to the
controlled stimulimanipulated by the experimenter. Suppose, for example,
we are interested in the problem that a compound of two conditioned
stimuli, say a light and a tone, each of which has been paired with the same
unconditioned stimulus, may have a higher probability of evoking a con-
ditioned response (CR) than either of the stimuli presented separately.
To analyze this problem in terms of the present model, we may represent
the light and the tone by stimulus sets s; and s,. Assuming that as a
result of the previous reinforcement the proportions of conditioned ele-
ments in sz, and s, (and therefore the probabilities of CR’s to the stimuli
taken separately) are p;, and p, respectively, application of Axiom C2
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yields for the probability of a CR to the compound of light and tone
presented together, neglecting any possible background stimulation,

Nipr + NTpT'
Ny + Np

Clearly, the probability of a CR to the compound is simply a weighted
mean of py, and py, and therefore its value must fall between the prob-
abilities of a CR to the two conditioned stimuli taken separately. No
“summation’ effect is predicted.

Often, however, it may be unrealistic to assume that background stimula-
tion from the apparatus and surroundings is negligible. In fact, the
experimenter may have to count on an appreciable amount of background
stimulation, predominantly conditioned to behaviors incompatible with
the CR, to prevent “spontaneous’ occurrences of the to-be-conditioned
response during intervals between presentations of the experimentally
controlled stimuli. Let us now expand our representation of the condi-
tioning situation by defining a set s, of background elements, a proportion
p, of which are conditioned to the CR. For simplicity, we shall consider
only the special case of p, = 0. Then the theoretical probabilities of
evocation of the CR by the light, the tone, and the compound of light
and sound (together with background stimulation in each case) are given
by

Pr(CR|L, T)=

Pr(CR| L) = —LPL_

N+ N,
Pr (CR | Ty = NPz
Ny + N,
and
Pr(CR|L,T) = —zbr + Nipr
Ny + Np + N,

respectively. Under these conditions it is possible to obtain a summation
effect. Assume, for example, that Ny = Ny = N, and prp > p;, so
Pr(CR| T) > Pr(CR| L). Taking the difference between the probability
of a CR to the compound and probability of a CR to the tone alone, we
have

Pr(CR|L,T) — Pr(CR|T) =22t Pr_Pr

3 2
_ 2pr + 2pr, — 3pr
6
_2pr — pr

6
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which is positive if the inequality 2p; > pp holds. Thus, in this case,
probability of a CR to the compound will exceed probability of a CR to
either conditioned stimulus alone, provided that p, is not more than twice
Pr
The role of background stimuli has been particularly important in
the interpretation of drive stimuli. It has been assumed (Estes, 1958,
1961a) that in simple animal learning experiments (e.g., those involving
the learning of running or bar-pressing responses with food or water
reward) the stimulus sample to which the animal responds at any time is
compounded from several sources: the experimentally controlled con-
ditioned stimulus (CS) or equivalent; stimuli, perhaps largely intra-
organismic in origin, controlled by the level of food or water deprivation;
and extraneous stimuli that are not systematically correlated with reward
of the response undergoing training and therefore remain for the most
part connected to competing responses. It is assumed further that the
sizes of samples of elements associated with the CS and with extraneous
sources sy and sy are independent of drive but that the size of the sample
of drive-stimulus elements, s, increases as a function of deprivation. In
most simple reward-learning experiments conditioning of the CS and
drive cues would proceed concurrently, and it might be expected that at a
given stage of learning the proportions of elements in samples from these
sources conditioned to the rewarded response R would be equal, that is,
pc = pp- If this were the case, then probability of the rewarded response
would be independent of deprivation; for, letting D and D’ correspond
to levels of deprivation such that Nj, < Np,, we have as the theoretical
probabilities of response R at the two deprivations,

Pr (R | CS, D) = NePe + NoPp
No+ Np
and y .
Pr(R| CS, D) = Nere + NoPpr,
No + Np

If the same training were given at the two drive levels, then we would
have p;, = pp as well as po = pp; in this case the difference between
the two expressions is zero. Considering the same assumptions, but with
extraneous cues taken explicitly into account, we arrive at a quite different
picture. In this case the two expressions for response probability are

Nope + Nppp + Ngpg
Nog+ Np+ Ng

Nope + Nppp + NEPE.
N¢+ Np + Ng

Pr(R|CS, D, E) =

and
Pr(R|CS, D,E) =
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Now, letting po = pp = pp = p and, for simplicity, taking py = 0, we
obtain for the difference

Pr(R| CS, D', Ey — Pr (R| CS, D, E)

=p[ Ne+Np __ Noe+Np }
Ng(Np — Np)

=Pp s
(Ne+ Np + Ng)(No + Np + Ng)

which is obviously greater than zero, given the assumption Nj > Ny,
Thus, in this theory, the principal reason why probability of the rewarded
response tends, other things being equal, to be higher at higher deprivations
is that the larger the sample of drive stimuli, the more effective it is in out-
weighing the effects of extraneous stimuli.

3.3 Sampling Axioms and Major Response Theorem of Fixed
Sample Size Model

In Sec. 3.2 we considered some transfer effects which can be derived
within a component model by considering only relationships among
stimulus samples that have had different reinforcement histories. Generally,
however, it is desirable to take account of the fact that there may not
always be a one-to-one correspondence between the experimental stimulus
display and the stimulation actually influencing the subject’s behavior.
Because of a number of factors, for example, variations in receptor-
orienting responses, fluctuations in the environmental situation, or
variations in excitatory states or thresholds of receptors, the subject often
may sample only a portion of the stimulation made available by the
experimenter. One of the chief problems of statistical learning theories
has been to formulate conceptual representations of the stimulus sampling
process and to develop their implications for learning phenomena. With
respect to specific mathematical properties of the sampling process,
component models that have appeared in the literature may be classified
into two main types: (1) models assuming fixed sampling probabilities
for the individual elements of a stimulus population, in which case sample
size varies randomly from trial to trial; and (2) models assuming a fixed
ratio between sample size and population size. The first type was first
discussed by Estes and Burke (1953), the second by Estes (1950), and some
detailed comparisons of the two types have been presented by Estes
(1959b). In this section we shall limit consideration to models of the second
type, since these are in most respects easier to work with.



STIMULUS COMPOUNDING AND GENERALIZATION 199

In the remainder of this section we shall distinguish stimulus populations
and samples by using S, with subscripts as needed, for a population and s
for a sample. The sampling axioms to be utilized are as follows:

Sampling Axioms

S1. For any-fixed, experimenter-defined stimulating situation, sample
size and population size are constant over trials.
S2.  All samples of the same size have equal probabilities.

A prerequisite to nearly all applications of the model is a theorem
relating response probability to the state of conditioning of a stimulus
population. We derive this theorem in terms of a stimulus situation §
containing N elements from which a sample of size N(s) = ¢ is drawn on
each trial. Assuming that some number N, of the elements of S is con-
ditioned to response 4,, we wish to obtain an expression for the expected
proportion of elements conditioned to 4; in samples drawn from S, since
this proportion will, by Axiom C2, be equal to the probability of evocation
of response A4, by samples from S. We begin, as usual, with the probability
in which we are interested; then, using the axioms of the model as appro-
priate, we proceed to expand in terms of the state of conditioning and
possible stimulus samples:

Pr (4| S) =3 Pr(4;|s)Pr(s]|S),

the summation being over all samples of size ¢ that can be drawn from S.
Next, substituting expressions for the conditioned probabilities, we obtain

Pr(4,]S) = z N(sy) <N]zs)) (GN:NJ(E)).

NGp=0 o (N
o

\

In the expression on the right N(s,)/c represents the probability of
A; in the presence of a sample of size o containing a subset s, of elements
conditioned to 4;; the product of binomial coefficients denotes the num-
ber of ways of obtaining exactly N(s,) elements conditioned to A4, in a
sample of size g, so that the ratio of this product to the number of ways of
drawing a sample of size ¢ is the probability of obtaining the given value
of N(s;)/o. The resulting formula will be recognized as the familiar
expression for the mean of a hypergeometric distribution (Feller, 1957,
p- 218), and we have the pleasingly simple outcome that the probability of
a response to the stimulating situation represented by a set S'is equal to the
proportion of elements of S that are conditioned to the given response:

Pr(4,]S) = % . (53)
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This result may seem too intuitively obvious to have needed a proof, but
it should be noted that the same theorem does not hold in general for
component models with fixed sampling probabilities for the elements
(cf. Estes & Suppes, 1959b).

3.4 Interpretation of Stimulus Generalization

Our approach to the problem of stimulus generalization is to represent
the similarity between two stimuli by the amount of overlap between two
sets of elements.’ In the simplest experimental paradigm for exhibiting
generalization we begin with two stimulus situations, represented by sets S,
and S, neither of which has any of its elements conditioned to a reference
response A;. Training is given by reinforcement of 4, in the presence of S,
only until the probability of 4, in that situation reaches some value
Pa1 > 0. Then test trials are given in the presence of S,, and if p,; now
proves to be greater than zero we say that stimulus generalization has
occurred. If the axioms of the component model are satisfied, the value of
Py provides, in fact, a measure of the overlap of S, and S,; for, by Eq. 53,
we have, immediately,

N(Sa N S)Pu

Py = P

N(S»)
where S, N S, denotes the set of elements common to S, and S,, since the
numerator of this fraction is simply the number of elements in S, that are
now conditioned to response 4;. More generally, if the proportion of
elements of S, conditioned to 4, before the experiment were equal to
8»1, 1Ot necessarily zero, the probability of response 4; to stimulus S,
after training in S, would be given by
_ NS, N Sy)pay + [N(S,) — N(S, N Sy)Igm
N(S,) ’
or, with the more compact notation N,, = N(S, N S,), etc.,
NupPur + (Ny — Nop)gon
N, '
This relation can be put in still more convenient form by letting N,,/N,
= Wap, namely, Pt = WaPa + (1 — Wa)gn.
This equation may be rearranged to read
Por = War(Pax — o) + go1s (540)
and we see that the difference (p,; — g,,) between the posttraining prob-
ability of 4; in S, and the pretraining probability in S, can be regarded
1% A model similar in most essentials has been presented in Bush & Mosteller (1951b).

J451

Pu = (54a)
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as the slope parameter of a linear “gradient” of generalization, in which
Pw is the dependent variable and the proportion of overlap between S,
and S, is the independent variable. If we hold g,; constant and let p,;
vary as the parameter, we generate a family of generalization gradients
which have their greatest disparities at w,, = 1 (i.e., when the test stimulus
S, is identical with S,) and converge as the overlap between S, and S,
decreases, until the gradients meet at p,; = g;,; when w,, = 0. Thus the
family of gradients shown in Fig. 9 illustrates the picture to be expected if a
series of generalization tests is given at each of several different stages of
training in S,, or, alternatively, at several different stages of extinction
following training in S,, as was done, for example, by Guttman and
Kalish (1956). The problem of “calibrating” a physical stimulus dimen-
sion to obtain a series of values that represent equal differences in the
value of w,, has been discussed by Carterette (1961).

The parameter w,, might be regarded as an index of the similarity of
S, to S,. In general, similarity is not a symmetrical relation, for w,, is not
equal to w,, (w,, being given by N, /N, and the w,, by N,/N,) except in
the special case N, = N,. When N, % N,, generalization from training
with the larger set to a test with the smaller set will be greater than general-

1.0

Probability of response A
&
I
B |

Sa
Fig. 9. Generalization from a training stimulus,
Sg, to a test stimulus, Sy, at several stages of train-
ing. The parameters are w,, = 0.5, the propor-
tion of overlap between S, and S, and g;; = 0.1,
the probability of response 4, to S, before training
on S,.

»n
o
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ization from training with the smaller set to a test with the larger set
(assuming that the reinforcement given the reference response A4, in the
presence of the training set S; establishes the same value of p;, in each case
before testing in S;). We shall give no formal assumption relating size of a
stimulus set to observable properties; however, it is reasonable to expect
that larger sets will be associated with more intense (where the notion of
intensity is applicable) or attention-getting stimuli. Thus, if S, and S,
represent tones a and b of the same frequency but with tone @ more intense
than b, we should predict greatcr generalization if we train the reference
response to a given level with ¢ and test with b than if we train to the same
level with b and test with a.

Although in the psychological literature the notion of stimulus generaliza-
tion has nearly always been taken to refer to generalization along some
physical continuum, such as wavelength of light or intensity of sound, it is
worth noting that the set-theoretical model is not restricted to such cases.
Predictions of generalization in the case of complex stimuli may be
generated by first evaluating the overlap parameter w,, for a given pair of
situations @ and b from a set of observations obtained with some particular
combination of values of p,; and g,; and then computing theoretical values
of py; for new conditions involving different levels of p,; and gu- The
problem of treating a simple “stimulus dimension” is of special interest,
however, and we conclude our discussion of generalization by sketching
one approach to this problem.!!

We shall consider the type of stimulus dimension that Stevens (1957)
has termed substitutive or metathetic, that is, one which involves the notion,
of a simple ordering of stimuli along a dimension without variation in
intensity or magnitude. Let us denote by Z a physical dimension of this
sort, for example, wavelength of visible light, which we wish to represent
by a sequence of stimulus sets. First we shall outline the properties that
we wish this representation to have and then spell out the assumptions of
the model more rigorously.

It is part of the intuitive basis of a substitutive dimension that one moves
from point to point by exchanging some of the elements of one stimulus
for new ones belonging to the next. Consequently, we assume that as
values of Z change by constant increments each successive stimulus set
should be generated by deleting a constant number of elements from the
preceding set and adding the same number of new elements to form the

! We follow, in most respects, the treatment given by W. K. Estes and D. L. LaBerge
in unpublished notes prepared for the 1957 SSRC Summer Institute in Social Science
for College Teachers of Mathematics. For an approach combining essentially the same
set-theoretical model with somewhat different learning assumptions, the reader is
referred to Restle (1961).
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next set; but, to ensure that the organism’s behavior can reflect the order-
ing of stimuli along the Z-scale without ambiguity, we need also to assume
that once an element is deleted as we go along the Z-scale it must not
reappear in the set corresponding to any higher Z-value. Further, in view
of the abundant empirical evidence that generalization declines in an
orderly fashion as the distance between two stimuli on such a dimension
increases, we must assume that (at least up to the point at which sets
corresponding to larger differences in Z are disjoint) the overlap between
two stimulus sets is directly related to the interval between the corre-
sponding stimuli on the Z-scale. These properties, taken together, enable
us to establish an intuitively reasonable correspondence between charac-
teristics of a sequence of stimulus sets and the empirical notion of
generalization along a dimension.

These ideas are incorporated more formally in the following set of
axioms. The basis for these axioms is a stimulus dimension Z, which may
be either continuous or discontinuous, a collection S, of stimulus sets,
and a function 2(Z) with a finite number of consecutive integers in its
range. The mapping of the set (x) of scaled stimulus values onto the sub-
sets S; of S, must satisfy the following axioms:

Generalization Axioms

Gl. Foralli<j< kin(x),S; NS < S;

G2. Foralli<j< kin(x),if S; NSy, # 0, where 0 is the null set, then
S; S (S; U Sp).

G3. Forall h<i,j<kin(@),ifi—h=k—j, then Ny; = Np; and
for all i in (x), N;; = N.

The set () may simply be a set of Z scale values or it may be a set of
Z-values rescaled by some transformation. The reasons for introducing
(x) are twofold. First, for mathematical simplicity we find it advisable to
restrict ourselves, at least for present purposes, to a finite set of Z-values
and therefore to a finite collection of stimulus sets. Second, there is no
reason to believe that equal distances along physical dimensions will in
general correspond to equal overlaps between stimulus sets. All that is
required, however, to make the theory workable is that for any given
physical dimension, wavelength of light, frequency of a tone, or whatever,
we can find experimentally a transformation « such that equal distances on
the z-scale do correspond to equal overlaps.

Axiom G1 states that if an element belongs to any two sets it also belongs
to all sets that fall between these two sets on the -scale. Axiom G2 states
that if two sets have any common elements then all of the elements of any
set falling between them belong to one or the other (or both) of the given
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sets; this property ensures that the elements drop out of the sets in order
as we move along the dimension. Axiom G3 describes the property that
distinguishes a simple substitutive dimension from an additive, or intensity
(in Stevens’ terminology, prothetic), dimension. It should be noted that
only if the number of values in the range of #(Z) is no greater than N(S,)
— N + 1 can Axiom G3 be satisfied. This restriction is necessary in order
to obtain a one-to-one mapping of the z-values into the subsets S; of S,.
One advantage in having the axioms set forth explicitly is that it then
becomes relatively easy to design experiments bearing on various aspects
of the model. Thus, to obtain evidence concerning the empirical tenability
of Axiom G1, we might choose a response 4, and a set (%) of stimuli,
including a pair i and k such that Pr (4, | i) = Pr (4, | k) = 0, then train
subjects with stimulus i only until Pr (4, |i) =1, and finally test with
stimulus k. If Pr (4, | k) is found to be greater than zero, it must be
concluded, in terms of the model, that S; NS, # 0; that is, the sets
corresponding to i and & have some elements in common. Given

Pr (4, | k) >0,

it must be predicted that for every stimulus j in (), such that i < Jj <k,
Pr(4,|j) > Pr (4, | k). Axiom G1 ensures that all of the elements of Sy,
which are now conditioned to 4; by virtue of belonging also to .S; must be
included in S}, possibly augmented by other elements of S, which are not
in S,.

To deal similarly with Axiom G2, we proceed in the same way to locate
two members i and k of a set (z) such that S; N S, 3 0. Then we train
subjects on both stimulus i and stimulus & until Pr (A, | i) = Pr(4, | k)
= 1, response A, being one that before this training had probability of less
than unity to all stimuli in (z). Now, by G2, if any stimulus J falls between
iand k, the set S; must be contained entirely in the union S, U Sy; con-
sequently, we must predict that we will now find Pr (4, |/) =1 for any
stimulus j such that i < j < k.

To evaluate Axiom G3 empirically, we require four stimuli 4 < i, j<k
suchthati — h = k — j. If the four stimuli are all different, we can simply
train subjects on 4 and test generalization to i, then train subjects to an
equal degree on j and test generalization to k. If the amount of generaliza-
tion, as measured by the probability of the test response, is the same in the
two cases, then the axiom is supported. In the special case in which # = i
and j = k we would be testing the assertion that the sets associated with
different values of z are of equal size. To accomplish this test, we need only
take any two neighboring values of z, say i and j, train subjects to some
criterion on i and test on j, then reverse the procedure by training (dif-
ferent) subjects to the same criterion on j and testing on i. If the axiom is
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satisfied, the amount of generalization should be the same in both direc-
tions.

Once we have introduced the notion of a dimension, it is natural to
inquire whether the parameter that represents the degree of communality
between pairs of stimulus sets might not be related in some simple way to a
measure of distance along the dimension. With one qualification, which
we mention later, the quantity d;; = 1 — w;; could serve as a suitable
measure of the distance between stimuli 7 and j. We can check to see
whether the familiar axioms for a metric are satisfied. These axioms are

if and only if i = j,

. dz’i + d.’ik > dik’

where it is understood that i, j, and k are any members of the set (2)
associated with a given dimension. The first three obviously hold, but
the fourth requires a bit of analysis. To carry out a proof, we use the
notation N,; for the number of elements common to S; and S;, N;; for
the number of elements in both S; and S, but not in S, and so on. The
difference between the two sides of the inequality we wish to establish can
be expanded in terms of this notation:

di,+djk—dik=(1—%)+ (1—ﬁ°)—(1—ﬂ'£)

N N
1
= N(N - Nii - N:ik + Nik)
1
= F(Nia‘k + Nk + Nix + Nijg — Nijp — Nijk — Nije

— Nyx + N + Nigx)

(Nzjk + Nar).

z|=

The last expression on the rightis nonnegative, which establishes the desired
inequality. To find the restrictions under which d is additive, let us assume
that stimuli #, /, and k fall in the order i < j < k on the dimension. Then,
by Axiom G1, we know that N = 0. However it is only in the special
cases in which S; and S, are either overlapping or adjacent that Ny = 0
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and, therefore, that d,; 4 d;;, = d;. It is possible to define an additive
distance measure that is not subject to this restriction, but such extensions
raise new problems and we are not able to pursue them here.

In concluding this section, we should like to emphasize one difference
between the model for generalization sketched here and some of those
already familiar in the literature (see, e.g., Spence, 1936; Hull, 1943).
We do not postulate a particular form for generalization of response
strength or excitatory tendency. Rather, we introduce certain assumptions
about the properties of the set of stimuli associated with a sensory dimen-
sion; then we take these together with learning assumptions and informa-
tion about reinforcement schedules as a basis for deriving theoretical
gradients of generalization for particular types of experiments. Under the
special conditions assumed in the example we have considered, the theory
predicts that a family of linear gradients with simple properties will be
observed when response probability is plotted as a function of distance
from the point of reinforcement. Predictions of this sort may reasonably
be tested by means of experiments in which suitable measures are taken to
meet the conditions assumed in the derivations (see, e.g., Carterette,
1961); but, to deal with experiments involving different training conditions
or response measures other than relative frequencies, further theoretical
analysis is called for, and we must be prepared to find substantial differ-
ences in the phenotypic properties of generalization gradients derived from
the same basic theory for different experimental situations.

4. COMPONENT AND LINEAR MODELS
FOR SIMPLE LEARNING

In this section we combine, in a sense, the theories discussed in the
preceding sections. Until now it was convenient for expositional purposes
to treat the problems of learning and generalization separately. We first
considered a type of learning model in which the different possible samples
of stimulation from trial to trial were assumed to be entirely distinct and
then turned to an analysis of generalization, or transfer, effects that could
be measured on an isolated test trial following a series of learning trials.
Prediction of these transfer effects depended on information concerning
the state of the stimulus population just before the test trial but did not
depend on information about the course of learning over preceding training
trials. However, in many (perhaps most) learning situations it is not
reasonable to assume that the samples, or patterns, of stimulation affecting
the organism on different trials of a series are entirely disjoint; rather,
they must overlap to various intermediate degrees, thus generating transfer
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effects throughout the learning series. In the “‘component models” of
stimulus sampling theory one simply takes the learning assumptions of the
pattern model (Sec. 2) together with the sampling axioms and response
rule of the generalization model (Sec. 3) to generate an account of learning
for this more general case.

4.1 Component Models with Fixed Sample Size

As indicated earlier, the analysis of a simple learning experiment in terms
of a component model is based on the representation of the stimulus as a
set S of N stimulus elements from which the subject draws a sample on
each trial. Atany time, each element in the set S is conditioned to exactly
one of the r response alternatives 4, ..., 4,; by the response axiom of
Sec. 3.1 the probability of a response is equal to the proportion of elements
in the trial sample conditioned to that response. At the termination of a
trial, if reinforcing event E; (i % 0) occurs, then with probability ¢ all
elements in the trial sample become conditioned ‘to response 4;. If E,
occurs, the conditioned status of elements in the sample does not change.
The conditioning parameter ¢ plays the same role here as in the pattern
model. It should be noted that in the early literature of stimulus sampling
theory this parameter was usually assumed to be equal to unity.

Two general types of component models can be distinguished. For the
fixed-sample-size model we assume that the sample size is a fixed number
s throughout any given experiment. For the independent-sampling model
we assume that the elements of the stimulus set S are sampled independ-
ently on each trial, each element having some fixed probability 0 of being
drawn. In this section we discuss the fixed-sample-size model and consider
the case in which all possible samples of size s are sampled with equal
probability.

FORMULATION FOR RTT EXPERIMENTS. To illustrate the model, we
first consider an experimental procedure in which a particular stimulus
item is given a single reinforced trial, followed by two consecutive non-
reinforced test trials. The design may be conveniently symbolized R7 7.
Procedures and results for a number of experiments using an R77 design
have been reported elsewhere (Estes, 1960a; Estes, Hopkins, & Crothers,
1960; Estes, 1961b; Crothers, 1961). For simplicity, suppose we select
a situation in which the probability of a correct response is zero before
the first reinforcement (and in which the likelihood of a subject’s obtaining
correct responses by guessing is negligible on all trials). In terms of the
fixed-sample-size model we can readily generate predictions for the prob-
abilities p,; of various combinations of response i on T; and response j
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on Ty If# j = 0 denote correct responses and 7, j = 1 denote errors, then

S2

P00=C<N>
s s
=c|l—)|1——
Por (N)( N)
s\ s
=c|ll——=)=
Pio ( N)N

s2
p11=1—c+c(1-—N).

(55)

To obtain the first result, we note that the correct response can occur on
either trial only if conditioning occurs on the reinforced trial, which has
probability ¢. On occasions when conditioning occurs, the whole sample
of s elements becomes conditioned to the correct response and the prob-
ability of this response on each of the test trials is s/N. On occasions when
conditioning does not occur on the reinforced trial, probability of a correct
response remains at zero over both test trials. Note that when s = N = |
this model is equivalent to the one-element model discussed in Sec. 1.1.
If more than one reinforcement is given prior to 7j, the predictions are
essentially unchanged. In general, for k preceding reinforcements, the
expected proportion of elements conditioned to the correct response (i.e.,
the probability of a correct response) at the time of the first test is

k
cs
po=1— (1-2,
and the probability of correct responses on both Ty and T, is given by
> ()0 —ofi- (=5T
= =1 — (1 == .
Poo gl (i ( ) N
To obtain this last expression, we note that a subject for whom i of
the k reinforcements have been effective will have probability {1 —
[1 — (s/N)I'} of making a correct response on each test, and the probability

that exactly i reinforcements will be effective is (]:) ¢’(1 — ¢)**. Similarly,

pom = (e o 1= (= 2] 2.

pu=(1—of+ g(:‘) ¢ — c)k—z-(l _ %)“.

and
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If s = N, these expressions reduce to

Po=1—(010—0¢F

P1o=Por =10

pun=(1—0"
This special case appears well suited to the interpretation of data obtained
by G. H. Bower (personal communication) from a study in which the 77T,
procedure was applied following various numbers of presentations of
word-word paired-associates. For 32 subjects, each tested on 10 items,
Bower reports observed proportions of py, = 0.894, p,, = py; = 0.003,
and p;; = 0.100.

When applied to other RTT experiments, this model has, however, not
yielded consistently accurate predictions. The difficulty apparently stems
from the fact that our assumptions do not take account of the retention
loss that is usually observed from T} to T (see, e.g., Estes, 1961b). An
extension of the model that is capable of handling retention decrement as
well as the acquisition process is discussed in Sec. 4.2 below.

For RTT experiments, in which the probability of successful guessing
is not negligible (as in paired-associate tasks involving a fixed list of re-
sponses which are known to the subject from the start), some additional
considerations arise. Perhaps the most natural extension of the preceding
treatment is to assume that the subject will start the experiment with a
proportion 1/r of the elements of a given set .S; connected to the correct
response and a proportion [1 — (1/r)] connected to incorrect responses, r
being the number of alternative responses. Then, for a fixed-sample-size
model, the probability p, of a correct response to a given item on the first
test trial after a single reinforcement is

p0=(1—c)—1-+c[
F

cs\1 = cs
=(1-=)=4+=,
( N)r N

the bracketed quantity being the proportion of elements connected to the
correct response in the event that the reinforcement is effective. The
probabilities of various combinations of correct and incorrect responses
on the two test trials are given by

1
Poo = (1 — C);‘2+ 0952

Pro = por = (1 — c)%(l - %) +ed(l — ¢) (56)

s+ (N — s)/r:l
N

pu=(-o(1=1) 41— 9,
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where

s o2

An alternative approach to the type of experiment in which the subject
guesses on unlearned items is to assume that initially all elements are
neutral, that is, are connected neither to correct nor to incorrect responses.
In the presence of a sample containing only neutral elements the subject
guesses, with probability 1/r of being correct. If the sample contains any
conditioned elements, then the proportion of conditioned elements in the
sample connected to the correct response determines its probability (e.g.,
if the sample contains nine elements, three conditioned to the correct
response, two conditioned to an incorrect response, and four uncondi-
tioned, then the probability of a correct response is simply 3/5). These
assumptions seem in some respects more intuitively satisfactory than
those we have considered. Perhaps the most important difference with
respect to empirical implications lies in the fact that with the latter set of
assumptions exposure time on test trials must be taken into account. If
the stimulus exposure time is just long enough to permit a response (in
terms of the theory, just long enough to permit the subject to draw a single
sample of stimulus elements), then the probabilities of correct and in-
correct response combinations on 7, and T, are

1 ,
Poo = (1 —C)F‘l'c‘?bz,

Pro=po= (1 — 0 1(1 - 1) gl — ), 57)
r r

m=(=o(t=1f+ - ¢

where

¢ =

)
| (1 _ 1) As /o
r N
(%
N—s Ny. o . .
The factor( s ) / (S)IS the probability that the subject will draw a

sample containing none of the s elements that became conditioned on the
reinforced trial; therefore 1 — ¢’ represents the probability that a subject
for whom the reinforced trial was effective nevertheless draws a sample
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containing no conditioned elements and makes an incorrect guess, whereas
¢’ is the probability that such a subject will make a correct response on
either test trial.

The two sets of equations (56 and 57) are formally identical and thus
cannot be distinguished in application to RTT data. Like Eq. 55, they have
the limitation of not allowing adequately for the retention loss usually
observed (see, e.g., Estes, Hopkins, & Crothers, 1960); we return to this
point in Sec. 4.2.

If exposure time is long enough on the test trials, then we assume that
the subject continues to draw successive random samples from § and
makes a response only when he finally draws a sample containing at least
one conditioned element. Thus in cases in which the reinforcement has
been effective on a previous trial (so that S contains a subset of s con-
ditioned elements) the subject will eventually draw a sample containing one
or more conditioned elements and will respond on the basis of these ele-
ments, thereby making a correct response with probability 1. Therefore,
for the case of unlimited exposure time, ¢" = 1 and Eq. 57 reduces to

1
P00=(1 —c)7'3+ca
1 1
Pro = poz = (1 — c)—(l - —), (58)
r r
12
pn=(1—c>(1——),
r

which are identical with the corresponding equations for the one-element
model of Sec. 1.2.

GENERAL FORMULATION. We turn now to the problem of deriving
from the fixed-sample-size model predictions concerning the course of
learning over an experiment consisting of a sequence of trials run under
some prescribed reinforcement schedule. We shall limit consideration to
the case in which each element in S is conditioned to exactly one of the
two response alternatives, 4; or Aj, so that there are N + 1 conditioning
states. Again, welet C, (i = 0, ..., N)denote the state in which i elements
of the set S are conditioned to 4; and N — i to 4,. As in the pattern
model, the transition probabilities among conditioning states are functions
of the reinforcement schedules and the set-theoretical parameters c, s, and
N. Following our approach in Sec. 2.1, we restrict the analysis to cases
in which the probability of reinforcement depends at most on the response
on the given trial; we thereby guarantee that all elements in the transition
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matrix for conditioning states are constant over trials. Thus the sequence
of conditioning states can again be conceived as a Markov chain.

Transition Probabilities. Let s;, denote the event of drawing a
sample on trial n with i elements conditioned to 4, and s — i conditioned
to 4,. Then the probability of a one-step transition from state C; to state
C;,, is given by

J

(N 3 j) (S : ”) Pr (E, | 5,.,C)), (59a)

9ji+v = € N
S

where Pr (E, | 5,_,C;) is the probability of an E;-event, given conditioning
state C; and a sample with » elements conditioned to 4,. To obtain Eq.
59a, we note that an E; must occur and that the subject must sample
exactly v elements from the N — j elements not already conditioned to
A,; the probability of the latter event is the number of ways of drawing
samples with » elements conditioned to 4, divided by the total number of
ways of drawing samples of size s. Similarly

=c (i_—::—)(ﬁ Pr (E, | 5,C)) (59b)

qj,5— = N
N

()
g=1—c+ec TSV—Pr(Ellsscj)

and

N

")
+ ——;—Pr (Es| 50C;) + Pr(Eo| C))|. (59)
(5

Although it is an obvious conclusion, it is important for the reader to
realize that the pattern model discussed in Sec. 2 is identical to the fixed-
sample-size model when s = 1. This correspondence between the two
models is indicated by the fact that Eqs. 59a, b, ¢ reduce to Eq. 23a, b, ¢
when we let s = 1.

For the simple noncontingent schedule in which only the two events
E, and E, occur (with probabilities 7~ and 1 — =, respectively) Eqs. 594, b, ¢
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R

9j,54v = ¢ (N) s

(=96
)

1— i) +1 - ( ;]) . (60c)

c+ clm——

() (%)

It is apparent that state Cy is an absorbing state when 77 = 1 and that C,

is an absorbing state when = = 0. Otherwise, all states are ergodic.
Mean Learning Curve. Following the same techniques used in con-

nection with Eq. 27, we obtain for the component model in the simple,

noncontingent case
n—1
Pr(ay) =7~ lr = Prial(1 =2 (61)

simplify to

9j,5—v = C(l - 77)

2

This mean learning function traces out a smooth growth curve that can
take any value between O and 1 on trial n if parameters are selected
appropriately. However, it is important to note that for a given realization
of the experiment the actual response probabilities for individual subjects
(as opposed to expectations) can only take on the values 0, 1/N, 2/N, .

(N — 1)/N, 1; that is, the values associated with the conditioning states.
This stepwise aspect of the process is particularly important when one
attempts to distinguish between this model and models that assume gradual
continuous increments in the strength or probability of a response over
time (Hull, 1943; Bush & Mosteller, 1955; Estes & Suppes, 1959a).

To illustrate this point, we consider an experiment on avoidance learning
reported by Theios (1963). Fifty rats were used as subjects. The apparatus
was a modified Miller-Mowrer electric-shock box, and the animal was
always placed in the black compartment. Shortly thereafter a buzzer and
light came on as the door between the compartments was opened. The
correct response (4,) was to run into the other compartment within 3
seconds. If 4; did not occur, the subject was given a high intensity shock
until it escaped into the other compartment. After 20 seconds the subject
was returned to the black compartment, and another trial was given.
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Each rat was run until it met a criterion of 20 consecutive successful
avoidance responses.

Theios analyzed the situation in terms of a component model in which
N = 2 and s = 1. Further, he assumed that Pr (4, ;) = 0, hence on trial
1 the subject is in conditioning state C,. Employing Eq. 60 with 7 = 1,
N =2, and 5 = 1, we obtain the following transition matrix:

Ce

—
(@]
(e}

NS Y

G

C, |0 c 1—c¢

The expected probability of an 4;-response on trial » is readily obtained
by specialization of Eq. 61,

c n—1
Pr(d;,)=1— (1 - 5) .

Applying this model, Theios estimated ¢ = 0.43 and provided an impressive
account of such statistics as total errors, the mean learning curve, trial
number of last error, autocorrelation of errors with lags of 1, 2, 3, and 4
trials, mean number of runs, probability of no reversals, and many others.
However, for our immediate purposes we are interested in only one feature
of his data; namely, whether the underlying response probabilities are
actually fixed at 0, %, and 1, as specified by the model. First we note that
it is not possible to establish the exact trial on which the subject moves
from C, to C; or from C; to C,. Nevertheless, if there are some trials
between the first success (4;-response) and the last error (4,-response),
we can be sure that the subject is in state C; on these trials, for, if the sub-
ject has made one success, at least one of the two stimulus elements is
conditioned to the A,-response; if on a later trial the subject makes an
error, then, up to that trial, at least one of the elements is not conditioned
to the A4,-response. Since deconditioning does not occur in the present
model, the subject must be in conditioning state C;. Thus, according to
the model, the sequence of responses after the first success and before the
last error should form a sequence of Bernoulli trials with constant prob-
ability p = g = } of an A,-response. Theios has applied several statistical
tests to check this hypothesis and none suggests that the assumption is
incorrect. For example, the response sequences for the trials between the
first success and last error were divided into blocks of four trials and the
number of A,-responses in each block was counted. The obtained fre-
quencies for 0, 1, 2, 3, and 4 successes were 2, 12, 17, 15, and 4, respectively;
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the predicted binomial frequencies were 3.1, 12.5, 18.5, 12.5, and 3.1.
The correspondence between predicted and observed frequencies is excel-
lent, as indicated by a y2 goodness-of-fit test that yielded a value of 1.47
with 4 degrees of freedom.

Theios has applied the same analysis to data from an experiment by
Solomon and Wynne (1953), in which dogs were required to learn an
avoidance response. The findings with regard to the binomial property
on trials after the first success and before the last error are in agreement
with his own data but suggest that the binomial parameter is other than .
From a stimulus sampling viewpoint this observation would suggest
that the two elements are not sampled with equal probabilities. For a
detailed discussion of this Bernoulli stepwise aspect of certain stimulus
sampling models, related statistical tests, and a review of relevant experi-
mental data the reader is referred to Suppes & Ginsberg (1963).

The mean learning curve for the fixed sample size model given by Eq. 60
is identical to the corresponding equation for the pattern model with the
sampling ratio cs/N taking the role of ¢/N. However, we need not look
far to find a difference in the predictions generated by the two models.
If we define «, , as in Eq. 29, that is,

N 12
Ao,p = z e Pr (Cz','n)s

i
2

then by carrying out the summation, using the same methods as in the case
of Eq. 27, we obtain

2c¢s cs(s—l)} c[s s(s — 1)}
n = l——+ ———= n— + == n—
" [ N T ol T NN T Ny - )

s s cms®
+ 2cmr (N —_ ']Vé)dlm_l + —Nz— . (62)
The asymptotic variance of the response probabilities for the component

model is simply
O'002 = Ko, 0 [Pr (Al,oo)]z'

Letting oy, = ¢ ,_1 = Og o, DOting that Pr (A ») = 7 and carrying out
the appropriate computations, we obtain

s w(l—m[N+(N—=2s
To TN [2N—s—1]' (63)
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This asymptotic variance of the response probabilities depends in relatively
simple ways on s and N. If we hold N fixed and differentiate with respect
to s, we find that o,,? increases monotonically with s; in particular, then,
this variance for a fixed sample size model with s > 1 is larger than that of
the pattern model with the same number of elements. If we hold the
sampling ratio s/N fixed and take the partial derivative with respect to N,
we find o,® to be a decreasing function of N. In the limit, if N — oo in such
a way that s/N = 6 remains constant, then

0
2—-6°

o’ —> 71 — ) (64)

which, we shall see later, is the variance for the linear model (Estes &
Suppes, 1959a). In contrast, for the pattern model the variance of the
p-values approaches 0 as N becomes large. We return to comparisons
between the two models in Sec. 4.3.

Sequential Predictions. We now examine some sequential statistics for
the fixed-sample-size model which later will help to clarify relationships
among the various stimulus sampling models. As in previous cases (e.g.,
Eq. 31a), we give results only for the noncontingent case in which Pr (£, ,)

=0andr = 2.

Consider, first, Pr (4; ,4 | E, ,). Bytaking account of the conditioning
states on trial » + 1 and trial » and also the sample on trial » we may
write

1
Pr (E ) Zk Pr (Al’n+1cj’n+1E1:’ﬂsi,7LCk,n)a
1,n/) s

Pr (Al,n+1, E,,)=
where, as before, s, , denotes the event of drawing a sample on trial n
with i elements conditioned to A, and s — i conditioned to 4,. Con-
ditionalizing, with our learning axioms in mind, we obtain

Pr (Ay, 41 I E,.,)

= o P ) ;k Pr (Ay 11| Cirsn) Pr(Cymir | EvnSinCion)

- Pr (El,n l 8;,nCr,n) P (55, l Cr,n) Pr (Cy).

But for our reinforcement procedures Pr(E,,) = Pr(E;, l 8.0 Chn)-
Further
c if j=k+4+s—1
Pr (C:i,n+1 l El,nsi,'nck,n) ={l—c if ] = ka
0 otherwise;
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that is, the s — i elements in the sample originally conditioned to 4, now
become conditioned to A4, with probability ¢, hence a move from state
C, to Cp,,_; occurs. Also, as noted with regard to Eq. 59,

k\ (N — k)
i s — 1
N .
s
Substitution of these results in our last expression for Pr (4,1 | E, ,)
yields

Pr (Si,nl Crn) =

Pr (41041 l E,,) = Z

Bk

(=0
k4+s—i k:| if\s—1i
———t (=)= | L Pr (G-
i p P R G
s
We now need the fact that the first raw moment of the hypergeometric
distribution is
k\ (N —k
zk:i iJ\s—i sk

S

permitting the simplification

¢cs  k cs
Pr (4 E)=324+2(1—=2) | Pr(C;
I'( 1,n+1 | l,n) % |:N + N( N):| 1'( k,n)

but, by definition,

k
Pr(4;,) = 2 = Pr(Cy,),
r N
whence
cs cs
Pe (| B = (1= %) Pr i)+ (65a)
By the same method of proof we may show that
Pr (] Ba) = (1= 5) Pr (s (65h)

Finally, for comparison with other models, we present the expressions for
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Pr (A4, ,.1E; ,A;,,). Derivations of these probabilities are based on the
same methods used in connection with Eq. 61a.
(s —1)

(s — 1
Pe(ypaBuads,) =l [ 1= = Do, + C= Do L 6

—1
Pr (i piiBnten) = 70 = ) + |1 = L= Doy, = ).

(66b)

Pr (g paBs i) = (L= [ 1 = =D,

— [ﬁ _ds— 1)]%”}. (66¢)

N N—1
(s —1)
Pr (Al,n+1E2,nA2,n) =1—-m|1l- TV-——I (“1,n — 0g,). (664)
P (ApiaBrads,d) = 7] 1 = =D = ) (660)

CS
Pr (Ag,y1Ey 1ds,) = w{ (1 - N)“ )

- [1 - C](\; = ﬂ@‘lm - OCz,n)}. (66f)

Pr (g 1Eandy,) = (1 — w){[l o ds= ”}xl,n

N N-1
— [1 - C(WS:_?:IOC&”}. (66g)

Pr (s, 1Es nAs,) = (1 — 7,){1 .
B [1 B EJ(VS—}H(“M - ow)}. (66h)

Application of these equations to the corresponding set of trigram
proportions for a preasymptotic trial block is not particularly rewarding.
The difficulty is that certain combinations of parameters, for example,
{1 = [e(s — /N — 11}(y , — @5,,,) and cs/N, behave as units; con-
sequently, the basic parameters c, 5, and N cannot be estimated individually
and, as a result, the predictions available from the simpler N-element
pattern model via Eq. 32 cannot be improved upon by use of Eq. 66. For
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asymptotic data the situation is somewhat different. By substituting the
limiting values for o, , and «, , in Eq. 66, that is, «; = 7 and from Eq. 63

_m(l— 7T)|:N + (N — 2)s] g

oy = 0%+ 7°

N 2N —s —1
_ 7N — 25 + Ns + 2n(N — s)(N — 1)]
NQN —s—1) ’

we can express the trigram probabilities Pr (4, ,E; 4, ) in terms of the
basic parameters of the model. The resulting expressions are somewhat
cumbersome, however, and we shall not pursue this line of analysis here.

4.2 Component Models with Stimulus Fluctuation

In Sec. 4.1, as in most of the literature on stimulus sampling models
for learning, we restricted attention to the special case in which the stimula-
tion effective on successive trials of an experiment may be considered to
represent independent random samples from the population of elements
available under the given experimental conditions. More generally, we
would expect that the independence of successive samples would depend
on the interval between trials. The concept of stimulus sampling in the
model corresponds to the process of stimulation in the empirical situation.
Thus sampling and resampling from a stimulus population must take time;
and, if the interval between trials is sufficiently short, there will not be time
to draw a completely new sample. We should expect the correlation, or
degree of overlap, between successive stimulus samples to vary inversely
with the intertrial interval, running from perfect overlap in the limiting
case (not necessarily empirically realizable) of a zero interval to independ-
ence at sufficiently long intervals. These notions have been embodied in the
stimulus fluctuation model (Estes, 1955a, 1955b, 1959a). In this section
we shall develop the assumption of stimulus fluctuation in connection with
fixed-sample-size models; consequently, the expressions derived will
differ in minor respects from those of the earlier presentations (cited
above) that were not restricted to the case of fixed sample size.
ASSUMPTIONS AND DERIVATION OF RETENTION CURVES. Follow-
ing the convention of previous articles on stimulus fluctuation models, we
denote by S* the set of stimulus elements potentially available for sampling
under a given set of experimental conditions, by S the subset of elements
available for sampling at any given time, and by S’ the subset of elements
that are temporarily unavailable (so that $* = S U S”). The trial sample
s is in turn a subset of S; however, in this presentation we assume for
simplicity that all of the temporarily available elements are sampled on
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each trial (i.e., S =5). We denote by N, N', and N* respectlvely, the
numbers of elements ins, S’, and S*.

The interchange between the stimulus sample and the remainder of the
population, that is, between s and S’, is assumed to occur at a constant
rate over time. Specifically, we assume that during an interval Az, which
is just long enough to permit the interchange of a single element between
s and S, there is probability g that such an interchange will occur, the
parameter g being constant over time. We shall limit consideration to the
special case in which all stimulus elements are equally likely to participate
in an interchange. With this restriction, the fluctuation process can be
characterized by the difference equation

fu+n=u—gvm+ghm@—l)+n—ﬂm%;

_ [1 _ g(; N,ﬂf(t) + £, (67)

where f(¢) denotes the probability that any given element of S* is in s

at time 7. This recursion can be solved by standard methods to yield the
explicit formula

1 I\
=2 _ |2 _r0ll1 -
S0 N* I:N* A )J[ g(N * N’)]
=J = [J = f(0)]d, (68)
where J = N|N*, the proportion of all the elements in the sample, and
a=1—g(1IN + 1N,

Equation 68 can now serve as the basis for deriving numerous expres-
sions of experimental interest. Suppose, for example, that at the end of a
conditioning (or extinction) period there were j, conditioned elements in
S and k, conditioned elements in S’, the momentary probability of a
conditioned response thus being p, = j,/N. To obtain an expression for
probability of a conditioned response after a rest interval of duration ¢,
we proceed as follows. For each conditioned element in S at the beginning
of the interval, we need only set f(0) = 1in Eq. 68 to obtain the probability
that the element is in S at time 7. Similarly, for a conditioned element
initially in S we set f(0) = 0 in Eq. 68. Combining the two types, we
obtain for the expected number of conditioned elements in S at time ¢

Jol = (7 = Da'] + koJ(1 — a) = (jo + ko)J — [(jo + ko] — jola".
Dividing by N (and noting that / = N/N*) we have, then, for the prob-
ability of a conditioned response at time ¢
_Jo +*k0 _ |:J0 + ko _ Po} at

N N*
= po* = (0" — poa, (69)

Dy
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where p,* and p, denote the proportion of conditioned elements in the
total population S* and the initial proportion in S, respectively. If the rest
interval begins after a conditioning period, we will ordinarily have p, > p,*
in which case Eq. 69 describes a decreasing function (forgetting, or
spontaneous regression). If the rest interval begins after an extinction
period, we will have p, < po*, in which case Eq. 69 describes an increasing
function (spontaneous recovery). The manner in which cases of spontane-
ous regression or recovery depend on the amount and spacing of previous
acquisition or extinction has been discussed in detail elsewhere (Estes,
1955a).
APPLICATION TO THE RTT EXPERIMENT. We noted in the preceding
section that the fixed-sample-size model could not provide a generally
satisfactory account of RTT experiments because it did not allow for the
retention loss usually observed between the first and second tests. It
seems reasonable that this defect might be remedied by removing the
restriction on independent sampling. To illustrate application of the
more general model with provision for stimulus fluctuation, we again
consider the case of an RTT experiment in which the probability of a
correct response is negligible before the reinforced trial (and also on later
trials if learning has not occurred). Letting #; and #, denote the intervals
between R and T; and between T, and T, respectively, we may obtain the
following basic expressions by setting f(0) equal to 1 or 0, as appropriate,
in Eq. 68: For the probability that an element sampled on R is sampled
again on 17,
fi=J+ 1 =
for the probability that an element sampled on T is sampled again on T,
fo=J+ A = J)a;
and for the probability that an element not sampled on 7; is sampled on
Ty,
fa=J(1 — a").

Assuming now that N = 1, so that we are dealing with a generalized

form of the pattern model, we can write the probabilities of the four com-

binations of correct and incorrect responses on 75 and T, in terms of the
conditioning parameter ¢ and the parameters f;:

Poo = ife
Por = ¢l — o), (70)
P10 = c(1 '__fl)f39
pu=1—c+cl =11 —fo)
where, as before, the subscripts 0 and 1 denote correct responses and
errors, respectively. As they stand, Egs. 70 are not suitable for application
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to data because there are too many parameters to be estimated. This
difficulty could be surmounted by adding a third test trial, for then the
resulting eight observation equations

Pooo = ¢f1f%
Poor = ¢f1fs(1 — fo),
Poro = ¢f1(1 —fz)fa,

etc., would permit overdetermination of the four parameters. In the case
of some published studies (e.g., Estes, 1961b) the data can be handled
quite well on the assumption that f; is approximately unity, in which case
Egs. 70 reduce to

Poo = Cfes

P = c(l = f3),
P10 =0,
pu=1-—c

In the general case of Eqs. 70 some predictions can be made without
knowing the exact parameter values. It has been noted in published
studies (Estes, Hopkins, & Crothers, 1960; Estes, 1961b) that the observed
proportion py, is generally larger than p;,. Taking the difference between
the theoretical expressions for these quantities, we have

Poa — pro = ¢fs(1 — fo) — (1 — fOfs
=c[J + (1 —Na](1 — )1 — a*)
—c(1 = N1 — d)J(1 — a®)
=c(l =N —d?)[J + A —dr — J(1 — a')]
= c(l1 — (A — a2)a",

which obviously must be equal to or greater than zero. The experiments
cited above have in all cases had #; < #, and therefore f; > f,. Since f,
which is directly estimated by the proportions of instances in which correct
responses on 77 are repeated on Ty, has ranged from about 0.6 to 0.9 in
these experiments (and f; must be larger), it is clear that p,,, the probability
of an incorrect followed by a correct response, should be relatively small.
This theoretical prediction accords well with observation.

Numerous predictions can be generated concerning the effects of varying
the durations of ¢, and 7,. The probability of repeating a correct response
from T, to T,, for example, should depend solely on the parameter f;,
decreasing as t, increases (and f, therefore decreases). The probability
of a correct response on T, following an incorrect response on 7, should
depend most strongly on fj, increasing as 7, (and therefore f;) increases.
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The over-all proportion correct per test should, of course, decrease from
T, to T, (although the difference between proportions on 7; and T, tends
to zero as ¢, becomes large). Data relevant to these and other predictions
are available in ‘studies by Estes, Hopkins, and Crothers (1960), Peterson,
Saltzman, Hillner, and Land (1962), and Witte (R. Witte, personal com-
munication). The predictions concerning effects of variation of #, are well
confirmed by these studies. Results bearing on predictions concerning
variation in #, are not consistent over the set of experiments, possibly
because of artifacts arising from item selection (discussed by Peterson
et al., 1962).

APPLICATION TO THE SIMPLE NONCONTINGENT CASE. Werestrict
consideration to the special case of N = 1; thus we are dealing with a
variant of the pattern model in which the pattern sampled on any trial is
the one most likely to be sampled on the next trial. No new concepts are
required beyond those introduced in connection with the RTT experiment,
but it is convenient to denote by a single symbol, say g, the probability
that the stimulus pattern sampled on any trial 7 is exchanged for another
pattern on trial n 4+ 1. In terms of this notation,

g=1—fi=(—N(—d)= (uﬁ)u—aﬁ,

where 7 is now taken to denote the intertrial interval. Also, we denote by
U1,,,, the probability of the state of the organism in which m stimulus
patterns are conditioned to the 4;-response and one of these is sampled
and by u,,, ,, the probability that m patterns are conditioned to A4, but a
pattern conditioned to A4, is sampled. Obviously

Nt
DPn = z Uim,n
m=0

where, as usual, p,, denotes the probability of the A;-response on trial 7.

Now we can write expressions for trigram probabilities, following
essentially the same reasoning used before in the case of the pattern model
with independent sampling. For the joint event 4,E,4, we obtain

m—1
Pr (Al,n—'rlEl,nAl,n) = 772 ulm,n[l — & + g N’ :|

N/

m
=7T|:(1 — &g _Fg;)pn + gEulm,n_:|a

for if an element conditioned to A, is sampled on trial n then with
probability 1 — g it is resampled and with probability g[(m — D/N']



224 STIMULUS SAMPLING THEORY

it is replaced by another element conditioned to A,; in either event

an A,-response must occur on trial » + 1. If the abbreviations U,

=Y uy,,,(m/N') and V,, = 3 u,,, ,(m/N’) are used, the trigram proba-
m m

bilities can be written in relatively compact form:

Pr (g pEx oAy ) = ﬂ[(l - Ni) i gUn],

N
Pr (A1, p11E1,nds,) = 7le(l — )1 — p,) + gV,
Pr (Al,n+1E2,nA2,n) = (1 - 7"')gVn’ (71)

1
Pr (g psEx ny,) = ng[(l + F) po— Un} -

P (i) = (1 =) [ (1 = 1 = ©) = £ ], + U

Pr (A2,n+1E2.nA1,n) = (1 - 77)[(6 — cg + g + %) Py — gUn]a

Pr (A2,n+1El,'rzA2,n) = 77[(1 —c+ Cg)(l - pn) - gVn];
Pr (A2,n+1E2,nA2,'n) = (1 - 77)[1 — DPn — gVn]

The chief difference between these expressions and the corresponding ones
for the independent sampling models is that sequential effects now depend
on the intertrial interval. Consider, for example, the first two of Egs.
71, involving repetitions of response 4. It will be noted that both expres-
sions represent linear combinations of p, and U,, with the relative con-
tribution of p, increasing as the intertrial interval (and therefore g)
decreases. Also, it is apparent from the defining equations for p, and U,
that p, > U,, with equality obtaining only in the special cases in which
both are equal to unity or both equal to zero. Therefore, the probability
of a repetition is inversely related to the intertrial interval. In particular,
the probability that a correct 4,- or A,-response will be repeated tends to
unity in the limit as the intertrial interval goes to zero. When the intertrial
interval becomes large, the parameter g approaches 1 — 1/N* and Egs.
71 reduce to those of a pattern model with N elements and independent
sampling.

Summing the first four of Eqs. 71, we obtain a recursion for probability
of the A4;-response:

Pass = (1 T cg)pn+c<1 _ g+ (U, + V).

Now, although a full proof would be quite involved, it is not hard to
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show heuristically that the asymptote is independent of the intertrial
interval. We note first that asymptotically we have

Un=gulm%

=zu m m

= UNEN
N* m )2
= — —_— um
v
N *
= F Ao, p >
where u,, is the probability that m elements are conditioned to A;.
The substitution of u,,(m/N*) for u,,, is possible in view of the intuitively
evident fact that, asymptotically, the probability that an element condi-
tioned to A; will constitute the trial sample is simply equal to the pro-
portion of such elements in the total population. Substituting into the

recursion for p, in terms of this relation, and the analogous one for V,,
N*

V, =~
Nl

(pn - oc2,n)’

we obtain
*

N
DPri1 = (1—c—g—%+cg)pn+0(1—g)ﬂ+gj—v7pn

=1 —c+cgp, + el = gm,
the simplification in the last line having been effected by means of the
identity
g

P S _g(N’+1) _N*
N’ N’ N
Setting p,.; = p, = P and solving for p,, we arrive at the tidy outcome

Po = (1 = ¢+ cg)py + (1 — g)m,
whence
P = .

The recursion in p, can be solved, but the resulting formula expressing
P as a function of # and the parameters is too cumbersome to yield much
useful information by visual inspection. It seems intuitively obvious that
for g <1 —1/N* (i.e., for any but very long intertrial intervals) the
learning curve will rise more sharply on early trials than the corresponding
curve for the independent sampling case. This is so because only sampled
elements can undergo conditioning, and, once sampled, an element is
more likely to be resampled the shorter the intertrial interval. However,
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the curves for longer and shorter intervals must cross ultimately, with the
curve for the longer interval approaching asymptote more rapidly on later
trials (Estes, 1955b). If = = 1, the total number of errors expected during
learning must be independent of the intertrial interval because each initially
unconditioned element will continue to produce an error each time it is
sampled until it is finally conditioned, and the probability of any specified
number of errors before conditioning depends only on the value of the
conditioning parameter c. Similarly, if 7 is set equal to 0 after a condition-
ing session, the total number of conditioned responses during extinction is
independent of the intertrial interval.

4.3 The Linear Model as a Limiting Case

For those experiments in which the available stimuli are the same on all
trials the possibility arises of using a model that suppresses the concept of
stimuli. In such a “pure” reinforcement model the learning assumptions
specify directly how response probability changes on a reinforced trial.
By all odds the most popular models of this sort are those which assume
probability of a response on a given trial to be a linear function of the
probability of that response on the previous trial.1?

The so-called “linear models” received their first systematic treatment
by Bush and Mosteller (1951a, 1955) and have been investigated and
developed further by many others. We shall be concerned only with a
certain class of linear models based on a single learning parameter 6.
A more extensive analysis of this class of linear models has been given in
Estes & Suppes (1959a).

The linear theory is formulated for the probability of a response on
trial n + 1, given the entire preceding sequence of responses and rein-
forcements.’® Let z, be the sequence of responses and reinforcements of a
given subject through trial n; that is, «, is a sequence of length 2» with
entries in the odd positions indicating responses and entries in the even
positions indicating reinforcements. The axioms of the linear model are
as follows.

Linear Axioms
For every 7, i’ and k such that 1 < i, i’ < rand 0 € k < r:
Ll. If Pr(E; ,A;,2,4) >0, then
Pr (Ai,n+1 l E; Ay @, y) = (1 — 6) Pr (Az',n ' T, 1) + 0.

' For a discussion of this general class of “‘incremental” models see Chapter 9 by
Sternberg in this volume.
** In the language of stochastic processes we have a chain of infinite order.
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L2. If Pr(E, Ay 2, 1) >0,k iandk 70, then

Pr (Ai,n—l-l I Ek,nAi’,nxn—l) =(1-—20)Pr (Ai,n | Z,_1)-
L3. If Pr(E, Ay &n1) >0, then

Pr(4; 1 | Ey A 3%, 1) = Pr(4,, I T, 1)

By Axiom L1, if the reinforcing event E;, corresponding to response 4,
occurs on trial n, then (regardless of the response occurring on trial n)
the probability of 4, increases by a linear transform of the old value. By
L2, if some reinforcing event other than E; occurs on trial », then the prob-
ability of 4, decreases by a linear transform of its old value; and by L3
occurrence of the ‘“‘neutral” event E, leaves response probabilities un-
changed. The axioms may be written more compactly in terms of the
probability p,; , that a subject identified with sequence  makes an 4,
response on trial n:

1. If the subject receives an E;-event on trial ,

Prinir = (1 — Opgy + 0.
2. If the subject receives an Ej-event (k £ i and k 5 0) on trial n,

Print1 = (1 - 0)pm',n'

3. If the subject receives an Eg-event on trial #,

pa:i,n+1 = P:ci,n'

From a mathematical standpoint it is important to note that for the
linear model the response probability associated with a particular subject
is free to vary continuously over the entire interval from 0 to 1, since this
probability undergoes linear transformations as a result of reinforcement.
Consequently, if we wish to interpret changes in response probability as
transitions among states of a Markov process, we must deal with a con-
tinuous-state space. Thus the Markov interpretation is of little practical
value for calculational purposes. In stimulus sampling models response
probability is defined in terms of the proportion of stimuli conditioned;
since the set of stimuli is finite, so also is the set of values taken on by the
response probability of any individual subject. It is this finite character of
stimulus sampling models that makes possible the extremely useful inter-
pretation of the models as finite Markov chains.

An inspection of the three axioms for the linear model indicates that
they have the same general form as Egs. 65, which describe changes in
response probability for the fixed-sample-size component model; that is,
if we let 0 = cs/N, then the two sets of rules are similar. As might be
expected from this observation, many of the predictions generated by the
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two models are identical when 6 = cs/N. For example, in the simple non-
contingent situation the mean learning curve for the linear model is

Pr(4,,) =m—[r — Pr (4, 9]0 — 6", (72)

which is the same as that of the component model (see Estes & Suppes,
1959a, for a derivation of results for the linear model). However, the two
models are not identical in all respects, as is indicated by a comparison of
the asymptotic variances of the response distributions. For the linear
model
4
2
Oy m(l — ) e

as contrasted to Eq. 63 for the component model. However, as already
noted in connection with Eq. 63, in the limit (as N — o) the o2 for the
component model equals the predicted value for the linear model.

The last result suggests that the component model may converge to

the linear process as N — co. This conjecture is substantially correct;
it can be shown that in the limit both the fixed-sample-size model and the
independent sampling model approach the linear model for an extremely
broad class of assumptions governing the sampling of elements. The
derivation of the linear model from component models holds for any
reinforcement schedule, for any finite number r of responses, and for every
trial n, not simply at asymptote. The proof of this convergence theorem is
lengthy and it is not presented here. However, the proof depends on the
fact that the variance of the sampling distribution for any statistic of the
trial sample approaches 0 as ¥ becomes large. A proof of the convergence
theorem is given by Estes and Suppes (1959b). Kemeny and Snell (1957)
also have considered the problem but their proof is restricted to the two-
choice noncontingent situation at asymptote.
COMPARISON OF THE LINEAR AND PATTERN MODELS. The same
limiting result does not, of course, hold for the pattern model discussed in
Sec. 2. For the pattern model only one element is sampled on each trial,
and it is obvious that as N — co the learning effect of this sampling scheme
would diminish to zero. For experimental situations in which both the
linear model and the pattern model appear to be applicable it is important
to derive differential predictions from the two models that, on empirical
grounds, will permit the researcher to choose between them. To this end
we display a few predictions for the linear model applied to both the RTT
situation and the simple two-response noncontingent situation; these
results will be compared with the corresponding equations for the pattern
model.

For simplicity let us assume that in the case of the RTT situation the
likelihood of a correct response by guessing is negligible on all trials. Then,
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according to the linear model, the probability of a reinforced response
changes in accordance with the equation

Pn+1 = (1 - G)Pn + 0'

In the present application the probability of a correct response on the
first trial (the R trial) is zero, hence the probability of a correct response on
the first test trial is simply 6. No reinforcement is given on T, and con-
sequently the probability of a correct response does not change between
T, and T,. Therefore, py,, the probability of a correct response on both
T, and T, (as defined in connection with Eq. 55) is 62. Similarly, we obtain
Por = P10 = 0(1 — 6) and p;; = (1 — ). Some relevant data are pre-
sented in Table 6 (from Estes, 1961b). They represent joint response

Table 6 Observed Joint Response Proportions for RTT Experi-
ment and Predictions from Linear Retention-Loss Model and
Sampling Model

Observed Retention-Loss Sampling

Proportion Model Model
Poo 0.238 0.238 0.238
Por 0.147 0.238 0.152
P1o 0.017 0.018 0
Pu 0.598 0.506 0.610

proportions for 40 subjects, each tested on 15 paired associate items of
the type described in Sec. 1.1, the RTT design applied to each item. In
order to minimize the probability of correct responses occurring by guess-
ing, these items were introduced (one per trial) into a larger list, the com-
position of which changed from trial to trial. A critical item introduced on
trial n received one reinforcement (paired presentation of stimulus and
response members), followed by a test (presentation of stimulus alone)
on trial n and trial » + 1, after which it was dropped from the list.

From an inspection of the data column of Table 6 it is obvious that the
simple linear model cannot handle these proportions. It suffices to note
that the model requires py; = pyo, Whereas the difference between these
two entries in the data column is quite large.

One might try to preserve the linear model by arguing that the pattern
of observed results in Table 6 could have arisen as an artifact. If, for
example, there are differences in difficulty among items (or, equivalently,
differences in learning rate among subjects), then the instances of incorrect
response on 7; would predominately represent smaller f-values than
instances of correct responses. On this account it might be expected that
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the predicted proportion of correct following incorrect responses would be
smaller than that allowed for under the “equal 6”’ assumption and there-
fore that the linear model might not actually be incompatible with the data
of Table 6. We can easily check the validity of such an argument. Suppose
that parameter 6, is associated with a proportion f; of the items (or subjects).
Then in each case in which 6, is applicable the probability of a correct
response on T} followed by an error on Ty is 6,(1 — 6,). Clearly, then, py,
estimated from a group of items described by differences in 6 would be

Por = Efﬁz(l — 0,).
But a similar argument yields

P10 = Zfz(l — 6,)0,.

Since, again, the expressions for p, and py, are equal for all distributions
of 0,, it is clear that individual differences in learning rates alone could not
account for the observed results.

A related hypothesis that might seem to merit consideration is that of
individual differences in rates of forgetting. Since the proportion of correct
responses on 7, is less than that on 7', there is evidently some retention loss,
and differences among subjects, or items, in susceptibility to this retention
loss might be a source of bias in the data. The hypothesis can be formu-
lated in the linear model as follows: the probability of the correct response
on T is equal to 6; if, however, there is a retention loss, then the proba-
bility of a correct response on T, will have declined to some value p, such
that p < 0. If there are individual differences in amount of retention loss,
then we should again categorize the population of subjects and items into
subgroups, with a proportion f; of the subjects characterized by retention
parameter p;. Theoretical expressions for p,, can be derived for such a
population by the same method used in the preceding case; the results are

Poo =0 ;fipi,

Por =0 ;fi(l = p)s
Pw=~1=0)3 fips
pu=(= 03101~ p)

This time the expressions for p,, and py, are different; with a suitable choice
of parameter values, they could accommodate the difference between the
observed proportions py; and p,,. However, another difficulty remains.
To obtain a near-zero value for p,, would require either a 6 near unity,
which would be incompatible with the observed proportion of 0.385

correct on T3, or a value of 3 f;p, near zero, which would be incompatible
i
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with the observed proportion of 0.255 correct on T,. Thus we have no
support for the hypothesis thatindividual differences in amount of retention
loss might account for the pattern of empirical values.

We could go on in a similar fashion and examine the results of supple-
menting the original linear model by hypotheses involving more complex
combinations or interactions of possible sources of bias (see Estes, 1961b).
For example, we might assume that there are large individual differences
in both learning and retention parameters. But, even with this latitude, it
would not be easy to adjust the linear model to the RTT data. Suppose
that we admit different learning parameters, 6; and 6,, and different
retention parameters, p; and p,, the combination 6,p, obtaining for half
the items and the combination f,p, for the other half. Now the p;
formulas become

6 0
Poo = 1P1 + Oepe ,
2
_ 6.1 — P + 0,(1 — P2)
01 — s
2
— a- 01)P1 +d - 02)P2
P10 = »
2
_ (A =6)d = p)+ (1 =61 —py)
P = .

2

From the data column of Table 6 the proportions of correct responses on
the first and second test trials are p, = 0.385 and p_, = 0.255, respectively.
Adding the first and second of the foregoing equations to obtain the
theoretical expression for p,_ and the first and third equations to get p_,,
we have

b, + 6
Do = 1 5 2
and
—+
Po= P1 ; Pz
Equating theoretical and observed values, we obtain the constraints
6, 4+ 6, = 0.770

p1+ pz = 0.510,

which should be satisfied by the parameter values. If the proportion
Poo in Table 6 is to be predicted correctly, we must have

01P1 + 62/)2 = (0.238
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or, substituting from the two preceding equations,

which may be solved for 6, :

0.083 + 0.77p,

6, =
2p; — 0.51

Now the admissible range of parameter values can be further reduced.
For the right-hand side of this last equation to have a value between 0
and 1, p, must be greater than 0.48; so we have the relatively narrow
bounds on the parameters p,

0.48 < p, < 0.51
0 < p; < 0.03.

2

Using these bounds on p;, we find from the equation expressing 0, as a
function of p, that 6, must in turn satisfy 0.93 < 6, < 1.0. But now the
model is in trouble, for, in order to satisfy the constraint 6, + 6, = 0.77,
6, would have to be negative (and the correct response probabilities for
half of the items on 7, would also be negative). About the best we can
do, without allowing “negative probabilities,”” is to use the limits we have
obtained for p;, p,, and 6, and arbitrarily assign a zero or small positive
value to 0,. Choosing the combination 6, = 0.95, 6, = 0.01, p, = 0.5,
and p, = 0.01, we obtain the theoretical values listed for the linear model
in Table 6. By introducing additional assumptions or additional param-
eters, we could improve the fit of the linear model to these data, but
there would seem to be little point in doing so. The refractoriness of the
data to description by any reasonably simple form of the model suggests
that perhaps the learning process is simply not well represented by the
type of growth function embodied in the linear model.

By contrast, these data can be quite readily handled by the stimulus
fluctuation model developed in the preceding section. Letting f, = 1
in Egs. 70 and using the estimates ¢ = 0.39 and f, = 0.61, we obtain the
theoretical values listed under “Sampling Model” in Table 6. We would
not, of course, claim that the sampling model had been rigorously tested,
since two parameters had to be estimated and there are only three degrees
of freedom in this set of data. However, the model does seem more
promising than any of the variants of the linear model that have been
investigated. More stringent tests of the sampling model can readily be
obtained by running similar experiments with longer sequences of test
trials, since predictions concerning joint response proportions over blocks
of three or more test trials can be generated without additional assumptions.
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ADDITIONAL COMPARISONS BETWEEN THE LINEAR AND PATTERN
MODEL. We now turn to a few comparisons between the linear model
and the multi-element pattern model for the simple noncontingent situa-
tion. First of all, we note that the mean learning curves for the two models
(as given in Eq. 37 and Eq. 72) are identical if we let ¢/N = 0. However,
the expressions for the variance of the asymptotic response distribution
are different; for the linear model o2 = w(1 — m)[0/(2 — 0)], whereas
for the pattern model ¢,,2 = 7(1 — 7)(1/N). This difference is reflected
in another prediction that provides a more direct experimental test of the
two models. It concerns the asymptotic variance of the distribution of the
number of A;-responses in a block of K trials which we denote Var (Ag).
For the linear model (cf. Estes & Suppes, 1959a),

K4 —36) 21 —16) [ —
2—16 2—-0)0
For the pattern model, by Eq. 42,

Var (Ag) = m(l — w){K + 2K(1C_ o _ 2 ;C)N [1 - (1 — ﬁ)KJ}

Var (Ag) = (1 — 71'){ (1 - e)K]}.

Note that, for ¢ = 0, the variance for the pattern model is larger than for
the linear model. However, for the case of 0 = ¢/N the variance for the
pattern model can be larger or smaller than for the linear model depending
on the particular values of ¢ and N.

Finally, we present certain asymptotic sequential predictions for the
linear model in the noncontingent situation; namely

lim Pr (4y 41 | Exndr) = (1 — 0)a + 0
lim Pr (4y 11 | Eondr ) = (1 — 0)a
lim Pr (Al,n+l | El,nAZ,n) ={1—-60b+0
lim Pr (4; ny1 | Eapds) = (1 — 0)b
where
01 — ) O

= _— d b=m— .
a T+ 0 an T 6

These predictions are to be compared with Eq. 34 for the pattern
model. In the case of the pattern model we note that Pr (4, | FEA,) and
Pr (4, | Ex4,) depend only on = and N, whereas Pr (AllEzAl) and
Pr (4, | E14,) depend on =, N, and c¢. In contrast, all four sequential
probabilities depend on 7 and 6 in the linear model. For comparisons
between the linear model and the pattern model in application to two-
choice data, the reader is referred to Suppes & Atkinson (1960).
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4.4 Applications to Multiperson Interactions

In this section we apply the linear model to experimental situations
involving multiperson interactions in which the reinforcement for any
given subject depends both on his response and on the responses of other
subjects. Several recent investigations have provided evidence indicating
the fruitfulness of this line of development. For example, Bush and Mos-
teller (1955) have analyzed a study of imitative behavior in terms of their
linear model, and Estes (1957a), Burke (1959, 1960), and Atkinson and
Suppes (1958) have derived and tested predictions from linear models for
behavior in two- and three-person games. Suppes and Atkinson (1960)
have also provided a comparison between pattern models and linear
models for multiperson experiments and have extended the analysis to
situations involving communication between subjects, monetary payoff,
social pressure, economic oligopolies, and related variables.

The simple two-person game has particular advantages for expository
purposes, and we use this situation to illustrate the technique of extending
the linear model to multiperson interactions. We consider a situation
which, from the standpoint of game theory (see, e.g., Luce & Raiffa,
1957), may be characterized as a game in normal form with a finite number
of strategies available to each player. Each play of the game constitutes a
trial, and a player’s choice of a strategy for a given trial corresponds to the
selection of a response. To avoid problems having to do with the measure-
ment of utility (or from the viewpoint of learning theory, problems of
reward magnitude), we assume a unit reward that is assigned on an all-or-
none basis. Rules of the game require the two players to exhibit their
choices simultaneously on all trials (as in a game of matching pennies), and
each player is informed that, given the choice of the other player on the
trial, there is exactly one choice leading to the unit reward.

We designate the two players as 4 and Bandlet 4, (i =1, ..., r)and
B;(j=1,...,r) denote the responses available to the two players. The
set of reinforcement probabilities prescribed by the experimenter may be
represented in a matrix (a;;, b;;) analogous to the *“payoff matrix” familiar
in game theory. The number a;; represents the probability of Player A
being correct on any trial of the experiment, given the response pair
A;B;; similarly, b,; is the probability of Player B being correct, given the
response pair 4,B;. For example, consider the matrix

B, B,

A, F% 1,0}
A, 11,0 0,1].
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When both subjects make Response 1, each has probability § of receiving
reward; when both make Response 2, then only Player B receives reward ;
when either of the other possible response pairs occurs (i.e., A,B; or A;B,),
then only Player A receives reward. It should be emphasized that, although
one usually thinks of one player winning and the other losing on any given
play of a game, this is not a necessary restriction on the model. In theory,
and in experimental tests of the theory, it is quite possible to permit both
or neither of the players to be rewarded on any trial. However, to provide
a relatively simple theoretical interpretation of reinforcing events, it is
essential that on a nonrewarded trial the player be informed (or led to infer)
that some other choice, had he made it under the same circumstances,
would have been successful. We return to this point later.

Let E(4 denote the event of reinforcing the A, response for Player A
and E{® the event of reinforcing the B, response for Player B. To simplify
our analysis, we consider the case in which each subject has only two
response alternatives, and we define the probability of occurrence of a
particular reinforcing event in terms of the payoff parameters as follows
(for i s i"andj #j'):

a;; = Pr (EZ(A) , A nBj ) b;; = Pr (Eg'B) ! A;.B;.)
1 —a;="Pr (Ez(’A)I A;nB;.n) 1 —b;;="Pr (EE"B) I Ay B

For example, if Player 4 makes an A4;-response and is rewarded, then an
E{A) occurs; however, if an 4; is made and no reward occurs, then we
assume that the other response is reinforced, that is, an E§% occurs.

Finally, one last definition to simplify notation. We denote Player A4’s
response probability by « and Player B’s by 5, and we denote by y the
joint probability of an A;- and B;-response. Specifically,

oy = Pl‘ (Al,n)a :811 = PI’ (Bl,n)’ yn = PI' (Al,nBl,n)' (74)

We now derive a theorem that provides recursive expressions for «,
and §, and points up a property of the model that greatly complicates the
mathematics, namely, that both «,,; and §,,; depend on the joint prob-
ability y, = Pr (4, ,B, ,). The statement of the theorem is as follows:

(73)

iy = [1 = 0,2 — ay, — ag)lo, + 0,4(azs — a1)f,

+ 04(ay + as; — @1z — )y, + 04(1 — az)

Brya =[1 — 052 — by — b2)]B, + Op(ber — byo)at,,
+ Op(b11 + b1a — by — byy)y, + Op(1 — byy),
where 6, and 05 are the learning parameters for players 4 and B. In

the proof of this theorem it will suffice to derive the difference equation
for «,,,, since the derivation for f,,, is identical. To begin with, from

(75a)

(75b)



236 STIMULUS SAMPLING THEORY
Axioms L1 and L2 we can easily show that the general form of a recursion
for o, is
tppy = (1 — 6, ), + 0,4 Pr (E{L).
The term Pr (E{4)) can then be expanded to
Pr(Ei7) = 3 Pr(EY)A,,B,,)
i
= z Pr (E;fln) l Az‘,nBj,n) Pr (Ai,an n)

@7

and by Egs. 73

Pr (E(1A7:) = ay; Pr (Al,nBl,n) + ayp Pr (Al,nB2,n)
+ (1 — ay) Pr (A2,nB1,n) + (1 — ay) Pr (Az,nBz,n)- (76)
Next we observe that

Pr (Al,nB2,n) = Pr (B2,n , Al,n) Pr (Al,n)
=[1 —Pr(B,, | 4,,)]Pr(4,,) (77a)
=Pr(4,,) —Pr (Ay,,B1,,)-
Similarly,
Pr (AZ,nBl,n) = Pr (Bl,n) — Pr (Al,nBl,n)a (77b)
and
Pr(4,,,B,,) = Pr (4s,, I B, ,) Pr(B,,)
= [l —Pr(4,, I B, )] Pr (B, ,)
= Pr(B,,) — Pr (41,85,
=1—Pr(B,,) —Pr(4,,) + Pr (41,081 ).

Substituting into Eq. 76 from Eqs. 77a, 77b, and 77¢ and simplifying by
means of the definitions of «, 8, and y, we obtain

Pr (E(fﬁ) = 4duYn + alz(“n - yn) + (1 - a21)(/3n - yn)
+ (1 - 022)(1 — %y — ﬂn + 7n)
= —(1 — ay, — ag)a, + (az — ax)B,
+ (@ + a1 — a1y — an)y, + (1 — ay).
Substitution of this expression into the general recursion for «,, yields the
desired result, which completes the proof.

It has been shown by Lamperti and Suppes (1959) that the limits o, £,
and y exist, whence (letting o\, = o, = &, ., =, =B and y, = »
in Eqs. 75a and 75b) we have two linear relations that are independent of
04 and 0p, namely,

aw = bf + cy + d, ef=fu+gy+h, (78)

(77¢)
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where
a=2— a;, — ay b=ay —ay
C=ay + ay — a3 — dyy d=1—ay (79)
e=2—by — by f=b22fb12

g = b+ by — by — by h=1— by
By eliminating y from Egs. 78 we obtain the following linear relation in o
and f:
(—ag — ce)a + (bg + ¢f ) = ch — dg. (80)
Unfortunately, this relationship is one of the few quantitative results
that can be directly computed for the linear model. It has, however, the
advantageous feature that it is independent of the learning parameters
6, and 05 and therefore may be compared directly with experimental data.
Application of this result can be illustrated in terms of the game cited
earlier in which the payoff matrix takes the form

B, B
Al li H 19 }
4, L1,0 0,1].
From Egs. 79 we obtain
% d=1

a=1 b=—1
-1 h=20

c
o e=1 f=1 g
and Eq. 80 becomes

Dojp=
o= M
[eld

—

G-De+@+hp=1
or f=14}. From this result we predict immediately that the long-run
proportion of Bj-responses will tend to 4. To derive a prediction for
Player A, we substitute the known values of the parameters into the first
part of Eq. 78 to obtain

a=—f+4y+1
=3+

Unfortunately we cannot compute y, the asymptotic probability of the
A, B;-response pair. However, we know y is positive, and, since only one
half of Player B’s responses are B,’s, y cannot be greater than 4. Therefore
we have 0 < v < 4 and as a result can set definite bounds on the long-run
probability of an A4;-response, namely,

p<a<i+i-i=4%
Thus we have the basis for a rather exacting experimental test, since the
asymptotic predictions for both subjects are parameter-free; that is, they
do not depend on the 6-values of either subject or on the initial response
probabilities. :
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Of course, by imposing restrictions on the experimentally determined
parameters a,; and b;; a variety of results can be obtained. We limit our-
selves to the consideration of one such case: choice of the parameters so
that the coefficients of y,, will vanish in the recursive equations (75a) and
(75b). Specifically, if we let ¢ = g = 0 and af — be 3 0, then

OL1’H—1 = aan + bﬂn + d (81)

ﬂn+1 = eﬂn + fan + h.
Solutions for this system are well known and can be obtained by a number
of different techniques; for a detailed discussion of the problem of ob-
taining explicit expressions of «, and f, for arbitrary n the reader is
referred to an article by Burke (1960). We do know, however, that the
limits for «, and 8, exist and are independent of both the initial conditions
and 0, and 0p. By substituting « = a,,; = «, and f = f, 1 = f, into
the two recursions we obtain

o(=bh+df
af — be
and
ﬁ_ah-l—de
_af—-be.

The fact that « and f are independent of 6, and 65 under the restrictions
imposed on the parameters in no way implies that y is also independent of
these quantities.

Equations 81 provide a precise test of the model, and the necessary con-
ditions for this test involve only experimentally manipulable parameters.
A great deal of experimental work has been conducted on this restricted
problem, and, in general, the correspondence between predicted and
observed values has been good; for accounts of this work see Atkin-
son & Suppes (1958), Burke (1959, 1960), and Suppes & Atkinson (1960).

In conclusion we should mention that all of the predictions presented
in this section are identical to those that can be derived from the pattern
model of Sec. 2. However, in general, only the grosser predictions, such
as those for o, and g, are the same for the two models.

5. DISCRIMINATION LEARNING"

The distinction between simple learning and discrimination learning is
somewhat arbitrary. By discrimination we refer, roughly speaking, to the
14 Using the terminology proposed by Bush, Galanter, and Luce in Chapter 2, the class

of problems considered in this section would be called ‘‘identification-learning”
experiments. :
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process whereby the subject learns to make one response to one of a pair
of stimuli and a different response to the other. But there is an element of
discrimination in any learning situation. Even in the simplest conditioning
experiment the subject learns to make a conditioned response only when
the conditioned stimulus is presented, and therefore to do something else
when that stimulus is absent. In the paired-associate situation (referred to
several times in preceding sections) the subject learns to associate the
appropriate member of a response set with each member of a set of
stimuli and therefore to ‘‘discriminate” the stimuli. The principal basis for
differentiation between the two categories of learning seems to be that in
the case of discrimination learning the similarity, or communality, between
stimuli is a major independent variable; in the case of simple learning
stimulus similarity is an extraneous factor to be minimized experimentally
and neglected in theory as far as possible.

One of the general strategic assumptions of the type of stimulus-response
theory, which has been associated with the development of stimulus
sampling models, is that discrimination learning involves a combination of
processes, each of which can be studied independently in simpler situations
—the learning aspect in experiments on acquisition or extinction and the
stimulus relationships in experiments on stimulus generalization or transfer
of training. Thus there will be nothing new at the conceptual level in our
treatment of discrimination. There is adequate scope for analysis of
different types of discriminative situations, but, since our main concern
in this section is with methods rather than content, we shall not go far in
this direction. We propose only to show how the processes of association
and generalization treated in preceding sections enter into discrimination
learning, and this can be accomplished by formulating assumptions and
deriving results of general interest for a few important cases.

5.1 The Pattern Model for Discrimination Learning

As in the cases of simple acquisition and probability learning, it is
sometimes useful in the treatment of discriminative situations to ignore
generalization effects among the stimuli involved in an experiment and to
regard each stimulus display as a unique pattern. Thus behavior elicited
by the stimulus display will depend only on the subject’s reinforcement
history with respect to that particular pattern. Two important variants
of the model arise, depending on whether experimental arrangements do
or do not ensure that the subject will sample the entire stimulus display
presented on each trial.
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Case 1. All cues presented are sampled on each trial. For a classical
two-stimulus, two-response discrimination problem (e.g., a Lashley
situation in which the rat is differentially rewarded for jumping to a black
card and avoiding a grey card) our conceptualization requires a distinction
among three types of cues: we denote by .S; the set of component cues
present only in the stimulus situation associated with reinforcement of
response A;, by S, the set of cues present only in the situation associated
with reinforcement of response A4,, and by S, the set of cues present in both
situations. In the example of the Lashley situation 4; might be the re-
sponse of jumping to the left-hand window; A4,, the response of jumping
to the right-hand window; S;, the stimulation present only on trials with
black cards; S, the stimulation present only on trials with grey cards; and
S,, the stimulation common to both types of trials. We denote by Ny,
N,, and N, the number of cues in each of these subsets. In standard experi-
ments the “cues’’ refer to experimentally manipulable aspects of the situa-
tion, such as tones, objects, colors, or symbols, and it is reasonably well
known just how many different combinations of these cues will be re-
sponded to by subjects as distinct patterns. In some instances, however, the
experimenter may have no a priori knowledge of the patterns distinguish-
able by the subject; in such instances the N, may be treated as unknown
parameters to be estimated from data, and the model may thus serve as a
tool in securing evidence concerning the subject’s perceptions of the
physical situation.

Suppose, now, that the experimenter’s procedure is to present on some
trials (7-trials) a set of cues including m,; from S; and m, from S, and on
the remaining trials (7,-trials) m, cues from S, and m, from S,. Further,
let the two types of trials occur with equal frequencies in random sequence.

On trials of type T; there will be (’Zl) (Nc) different patterns of cues

1 4
available. Assuming that these patterns are all equally probable and

-1

letting b, = [(:1) (Z"):| , we can obtain an expression for probability
1 ¢

of a correct response on a T-trial simply by appropriate substitution into

Eq. 28, namely,

Pr (Al,n1| Tl,nl) =1—[1—-Pr (A1,1 l Tl,l)](l — cby )™, (82)
where 7, is the ordinal number of the T';-trial. The corresponding function

Lo . . . N, -1

for T,-trials is obtained similarly with parameter by, = [(mz) (r];\zlc)} .
2 (4

In the discrimination literature cues in the sets .S; and S, are commonly

referred to as relevant and those in S, as irrelevant, since S; and S, are

associated with reinforcing events, whereas the S, are not. It is apparent
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by inspection of Eq. 82 that (for the foregoing specified experimental
conditions) the pattern model predicts that probability of correct respond-
ing will go asymptotically to unity regardless of the numbers of relevant
and irrelevant cues, provided only that neither m, nor m, is equal to zero.
Rate of approach to asymptote on each type of trial is inversely related to
the total number of patterns available for sampling. Therefore, other
things being equal, rate of learning is decreased (and total errors to criterion
increased) by the addition of either relevant or irrelevant cues.

Case 2. Only a subset of the cues presented on each trial is sampled.
We consider now the situation that arises if the number of cues presented
per trial is too large, or the exposure time too short, for the entire stimulus
display to be sampled by the subject. Let us suppose that there are only
two stimulus displays. The display on T)-trials comprises the N; cues of
S, together with the N, cues of S, and that on T-trials, the N, cues of S,
together with the N, cues of S,; further, to simplify the analysis let
N, = N, = N. For a given fixed exposure time we assume a fixed sample
size 5, with all samples of exactly s cues being equiprobable. On T;-trials,

then, there will be (j\:) (S f”sl) ways of filling the sample with s, cues from
S; and the remainder from S,. The asymptote of discriminative perform-
ance will depend on the size of s in relation to N,. If s < N,, so that the
entire sample can come from the set of irrelevant cues, then the asymptotic
probability of a correct response will be less than unity.

In Case 2 two types of patterns need to be distinguished for each type
of trial. We can limit consideration to T'-trials, since analogous arguments
hold for T,. There may be some patterns that include only cues from S,
and learning with respect to them will be on a simple random reinforcement

schedule. The proportion of such patterns, w,, is given by

N,
ST
[ N + NU 3
5
which is equal to zero if s > N,. If T;- and Ty-trials have equal prob-
abilities, then the probability, to be denoted ¥, that a pattern containing
only cues from S, will be conditioned to the 4,-response on trial # can be

obtained from Eq. 28 by setting mj, = 7y = 3:

Pr(4,,) =V, and
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where

N

—1
b= (N + Nc) >
that is,
Va=1%—(G— V)l — cby ™. (83)

The remaining patterns available on 7-trials all contain at least one cue
from S; and thus occur only on trials when response 4, is reinforced.
The probability, to be denoted U, that any one of these is conditioned to
A, on trial n may be similarly obtained by rewriting Eq. 28, this time with
me =0, 7y = 1, Pr(4,,) = U,, and ¢/N = Lcb, that is,

Up=1—=(1—Up1 — §ecb)", (84)

where the factor § enters because these patterns are available for sampling
on only one half of the trials.

Now, to obtain the probability of an A,-response if a 7)-display is
presented on trial 7, we need only combine Eqgs. 83 and 84, weighting each
by the probability of the appropriate type of pattern, namely,

Pr (Al,nl Tl,n) = (1 - Wc)Un + chn
=1=w +iw, — (1 —w)d — UY(1 — feb)*?
=Wz — V)l — cb)", (85a)

which may be simplified, if U; = ¥; = 4, to
Pr(dy, | Ti) =1 — 4w, — 31 — w)(1 — Leb)™. (855)

The resulting expression for probability of a correct response has a
number of interesting general properties. The asymptote, as anticipated,
depends in a simple way on w,, the proportion of “‘irrelevant patterns.”
When w, = 0, the asymptotic probability of a correct response is unity;
when w, = 1, the whole process reduces to simple random reinforcement.
Between these extremes, asymptotic performance varies inversely with
W,, 5o that the terminal proportion of correct responses on either type of
trial provides a simple estimate of this parameter from data. The slope
parameter cb could then be estimated from total errors over a series of
trials. As in Case 1, the rate of approach to asymptote proves to depend
only on the conditioning parameters and total number of patterns avail-
able for sampling; thus it is a joint function of the total number of cues
N 4 ¥, aud ihe sampic size s but does not depend on the reiative pro-
portions of relevant and irrelevant cues. The last result may seem im-
plausible, but it should be noted that the result depends on the simplifying
assumption of the pattern model that there are no transfer effects from
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learning on one pattern to performance on another pattern that has
component cues in common with the first. The situation in this regard
is different for the ““mixed model” to be discussed next.

5.2 A Mixed Model

The pattern model may provide a relatively complete account of dis-
crimination data in situations involving only distinct, readily discriminable
patterns of stimulation, as, for example the “paired-comparison” experi-
ment discussed in Sec. 2.3 or the verbal discrimination experiment treated
by Bower (1962). Also, this model may account for some aspects of the
data (e.g., asymptotic performance level, trials to criterion) even in dis-
crimination experiments in which similarity, or communality, among
stimuli is a major variable. But, to account for other aspects of the data in
cases of the latter type, it is necessary to deal with transfer effects through-
out the course of learning. The approach to this problem which we now
wish to consider employs no new conceptual apparatus but simply a
combination of ideas developed in preceding sections.

In the mixed model the conceptualization of the discriminative situation
and the learning assumptions is exactly the same as that of the pattern
model discussed in Sec. 5.1. The only change is in the response rule and
that is altered in only one respect. As before, we assume that once a
stimulus pattern has become conditioned to a response it will evoke that
response on each subsequent occurrence (unless on some later trial the
pattern becomes reconditioned to a different response, as, for example,
during reversal of a discrimination). The new feature concerns patterns
which have not yet become conditioned to any of the response alternatives
of the given experimental situation but which have component cues in
common with other patterns that have been so conditioned. Our assump-
tion is simply that transfer occurs from a conditioned to an unconditioned
pattern in accordance with the assumptions utilized in our earlier treatment
of compounding and generalization (specifically, by axiom C2, together
with a modified version of Cl, of Sec. 3.1).

Before the assumptions about transfer can be employed unambiguously
in connection with the mixed model, the notion of conditioned status of
a component cue needs to be clarified. We shall say that a cue is condi-
tioned to response A, if it is a component of a stimulus pattern that has
become conditioned to response 4,. If a cue belongs to two patterns, one
of which is conditioned to response 4; and one to response A; (i # ),
then the conditioning status of the cue follows that of the more recently
conditioned pattern. If a cue belongs to no conditioned pattern, then it is
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said to be in the unconditioned, or “guessing,”” state. Note that a pattern
may be unconditioned even though all of its cues are conditioned. Suppose
for example, that a pattern consisting of cues #, ¥, and z in a particular
arrangement has never been presented during the first # trials of an experi-
ment but that each of the cues has appeared in other patterns, say wxy
and wuz, which have been presented and conditioned. Then all of the cues
of pattern xyz would be conditioned, but the pattern would still be in the
unconditioned state. Consequently, if wzy had been conditioned to
response 4, and wuz to A,, the probability of 4, in the presence of pattern
xyz would be £; but, if response 4; were effectively reinforced in the
presence of xyz, its probability of evocation by that pattern would hence-
forth be unity.

The only new complication arises if an unconditioned pattern includes
cues that are still in the unconditioned state. Several alternative ways of
formulating the response rule for this case have some plausibility, and it is
by no means sure that any one choice will prove to hold for all types of
situations. We shall limit consideration to the formulation suggested by
a recent study of discrimination and transfer which has been analyzed in
terms of the mixed model (Estes & Hopkins, 1961). The amended response
rule is a direct generalization of Axiom C2 of Sec. 3.1; specifically, for a
situation involving r response alternatives the following assumptions will
apply:

1. If all cues in a pattern are unconditioned, the probability of any
response A, is equal to 1/r.

2. If a pattern (sample) comprises m cues conditioned to response A4,
m’ cues conditioned to other responses, and m” unconditioned cues, then
the probability that 4; will be evoked by this pattern is given by

m + (m"[r)
m4m 4+ m'

In other words, Axiom C2 holds but with each unconditioned cue con-
tributing ““weight”” 1/r toward the evocation of each of the alternative
responses.

To illustrate these assumptions in operation, let us consider a simple
classical discrimination experiment involving three cues, a, b, and ¢, and
two responses, 4; and 4,. We shall assume that the pattern ac is presented
“on half of the trials, with A4, reinforced, and bc on the other half of the
trials, with A4, reinforced, the two types of trials occurring in random
sequence. We assume further that conditions are such as to ensure the
subject’s sampling both cues presented on each trial. In a tabulation of the
possible conditioning states of each pattern a 1, 2, or 0, respectively, in a
state column indicates that the pattern is conditioned to 4,, conditioned to
A,, or unconditioned. For each pair of values under States, the associated

Pr (4)) =
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A;-probabilities, computed according to the modified response rule, are
given in the corresponding positions under 4;-probability. To reduce
algebraic complications, we shall carry out derivations for the special
case in which the subject starts the experiment with both patterns un-
conditioned. Then, under the conditions of reinforcement specified, only

A,-Probability

States to Each Pattern
ac be ac bc
1 2 1 0
1 1 1 1
2 2 0 0
2 1 0 1
0 1 3 1
0 2 1 0
1 0 1 2
2 0 0 1
0 0 % H

the states represented in the first, seventh, sixth, and ninth rows of the
table are available to the subject, and for brevity we number these states
3,2, 1, and 0, in the order just listed; that is,

State 3 = pattern ac conditioned to 4;, and pattern bc conditioned to
A2n

State 2 = pattern ac conditioned to 4,, and pattern bc unconditioned.

State 1 = pattern ac unconditioned, and pattern bc¢ conditioned to A,.

State 0 = both patterns ac and bc are unconditioned.

Now, these states can be interpreted as the states of a Markov chain,
since the probability of transition from any one of them to any other on a
given trial is independent of the preceding history. The matrix of prob-
abilities for one-step transitions among the four states takes the following
form:

10 0 0
1% o 0
2 2
_ (86
€=l o ¢ o (8
2
0 < < 1—c¢
2 2 1,
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where the states are ordered 3, 2, 1, 0 from top to bottom and left to right.
Thus State 3 (in which ac is conditioned to A, and bc to 4,) is an absorbing
state, and the process must terminate in this state, with asymptotic prob-
ability of a correct response to each pattern equal to unity. In State 2
pattern ac is conditioned to A4;, but bc is still unconditioned. This state
can be reached only from State 0, in which both patterns are unconditioned ;
the probability of the transition is § (the probability that pattern ac will
be presented) times c (the probability that the reinforcing event will
produce conditioning); thus the entry in the second cell of the bottom row
is ¢/2. From State 2 the subject can go only to State 3, and this transition
again has probability ¢/2. The other cells are filled in similarly.

Now the probability u, ,, of being in state i on trial » can be derived quite
easily for each state. The subject is assumed to start the experiment in
State 0 and has probability ¢ of leaving this state on each trial; hence

T
For State 1 we can write a recursion,
(. Ve c\"? c n2 €
iy, (1 2) S+ (1 2) =05+ +=0",

which holds if #n > 2. To be in State 1 on trial n the subject must have
entered at the end of trial 1, which has probability ¢/2, and then remained
for n — 2 trials, which has probability [(I — (¢/2)]*2; have entered at the
end of trial 2, which has probability (1 — ¢)(¢/2), and then remained for
n — 3 trials, which has probability [I — (¢/2)]"3; ... ; or have entered
at the end of trial » — 1, which has probability (1 — ¢)"~2(c/2). The right-
hand side of this recursion can be summed to yield

Uy, == (1 —c)"? "fl:l__—ﬂz_):lv

<
2 v=0 1—c¢

R
= (1 = g)n_l —( -t

By an identical argument we obtain

— 1
C —
w= (1=5 —a— o
and then by subtraction

u3,n =1- Ug y — ul,n — Uy,

cn—l -
=1=2(1=3) +a-o
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From the tabulation of states and response probabilities we know that
the probability of response 4; to pattern ac is equal to 1, 1, 1, and 4,
respectively, when the subject is in State 3, 2, 1, or 0. Consequently the
probability of a correct (4;) response to ac is obtained simply by summing
these response probabilities, each weighted by the state probability, namely,

1 1
PI' (Al,n, ac) = u3,n + uz,n + Zul,n + E”o,n
—1 n—1
=1—20—f) +1—c%h+0—5)
2 ( ) 2

—a—og (1= = ta o

2
1
+_1__ n—1
2( ©)
3 c\™t o1
=1—-=(1—-= -1 =) 87
4( 2) +4( 2 ®7)

Equation 87 is written for the probability of an A;-response to ac on
trial n; however, the expression for probability of an A,-response to bc is
identical, and consequently Eq. 87 expresses also the probability p, of a
correct response on any trial, without regard to the stimulus pattern pre-
sented. A simple estimator of the conditioning parameter ¢ is now obtain-
able by summing the error probability over trials. Letting e denote the
expected total errors during learning, we have

e=3(1-p)

38 "t 1 & —
S (R R
_32_11

4¢ 4dc
_3

4c

An example of the sort of prediction involving a relatively direct assess-
ment of transfer effects is the following. Suppose the first stimulus pattern
to appearis ac; the probability of a correct response to it is, by hypothesis,
%, and if there were no transfer between patterns the probability of a correct
response to bc when it first appeared on a later trial should be § also.
Under the assumptions of the mixed model, however, the probability of a
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correct response to bc, if it first appeared on trial 2, should be
L—3l—0—cd+}_1 c

>

2 2 4
if it first appeared on trial 3, it should be

%a—wf+%_1_c0 c»

2 2 2 2

and so on, tending to } after a sufficiently long prior sequence of ac trials.

Simply by inspection of the transition matrix we can develop an interest-
ing prediction concerning behavior during the presolution period of the
experiment. By presolution period we mean the sequence of trials before the
last error for any given subject. We know that the subject cannot be in
State 3 on any trial before the last error. On all trials of the presolution
period the probability of a correct response should be equal either to %
(if no conditioning has occurred) or to £ (if exactly one of the two stimulus
patterns has been conditioned to its correct response). Thus the propor-
tion, which we denote by P, of correct responses over the presolution

ps>
trial sequence should fall in the interval

$< P, <%,

and, in fact, the same bounds obtain for any subset of trials within the
presolution sequence. Clearly, predictions from this model concerning
presolution responding differ sharply from those derivable from any model
that assumes a continuous increase in probability of correct responding
during the presolution period; this model also differs, though not so
sharply, from a pure “insight’” model that assumes no learning on pre-
solution trials. As far as we know, no data relevant to these differential
predictions are available in the literature (though similar predictions have
been tested in somewhat different situations: Suppes & Ginsberg, 1963;
Theios, 1963). Now that the predictions are in hand, it seems likely that
pertinent analyses will be forthcoming.

The development in this section was for the case in which there were
only three cues, a, b, and ¢. For the more general case we could assume
that there are N, cues associated with stimulus a, N, with stimulus b,
and N, with stimulus ¢. If we assume, as we have in this section, that
experimental conditions are such to ensure the subject’s sampling all cues
presented on each trial, then Eq. 87 may be rewritten as

s

n—1
Pr(4,,|ac)=1— % 1+ wl)(l — g) + —% wi(l — )"t

n—1
Pr (A, |be)=1— %(1 + wy) (1 - ;) + %wz(l — o),



DISCRIMINATION LEARNING 249

where

Nc Nc
W= ————— and Wy = ——— .
Na+Nc Nb+Nc

Further,

e z{% [1 — Pr(4y, |ac)] + % [1 — Pr (4, | b”)]}

n=1

1 1
=2(1+ 2w,
c( +2w)

where W = 4(w; + w,). The parameter w is an index of similarity between
the stimuli ac and bc; as w approaches its maximum value of 1, the number
of total errors increases. Further, the proportion of correct responses
over the presolution trial sequence should fall in the interval

PPy < 3 A+ 41— wy)
or in the interval
PP, < 5+ A — wy),

depending on whether ac or bc is conditioned first.

5.3 Component Models

As long as the number of stimulus patterns involved in a discrimination
experiment is relatively small, an analysis in terms of an appropriate case
of the mixed model can be effected along the lines indicated in Sec. 5.2.
But the number of cues need become only moderately large in order to
generate a number of patterns so great as to be unmanageable by these
methods. However, if the number of patterns is large enough so that any
particular pattern is unlikely to be sampled more than once during an
experiment, the emendations of the response rule presented in Sec. 5.2
can be neglected and the process treated as a simple extension of the com-
ponent model of Sec. 4.1.

Suppose, for example, that a classical discrimination involved a set,
Sy, of cues available only on trials when A, is reinforced, a set, S,, of cues
available only on trials when 4, is reinforced, and a set, S,, of cues available
on all trials; further, assume that a constant fraction of each set presented
is sampled by the subject on any trial. If the two types of trials occur with
equal probabilities and if the numbers of cues in the various sets are large
enough so that the number of possible trial samples is larger than the number
of trials in the experiment, then we may apply Eq. 53 of Sec. 3.3 to obtain
approximate expressions for response probabilities. For example, asymp-
totically all of the N, elements of Sy and half of the N, elements of S,
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(on the average) would be conditioned to response 4;, and therefore
probability of 4, on a trial when S; was presented would be predicted by
the component model to be

N1+%Nc

Pr(4,| S, = ,
(4] 5 = St

which will, in general, have a value intermediate between 4 and unity.
Functions for learning curves and other aspects of the data can be derived
for various types of discrimination experiments from the assumptions of
the component model. Numerous results of this sort have been pub-
lished (Burke & Estes, 1957; Bush & Mosteller, 1951b; Estes, 1958,
1961a; Estes, Burke, Atkinson & Frankmann, 1957; Popper, 1959;
Popper & Atkinson, 1958).

5.4 Analysis of a Signal Detection Experiment

Although, so far, we have developed stimuius sampling models only in
connection with simple associative learning and discrimination learning,
it should be noted that such models may have much broader areas of
application. On occasion we may even see possibilities of using the con-
cepts of stimulus sampling and association to interpret experiments that,
by conventional classifications, do not fall within the area of learning.
In this section we examine such a case.

The experiment to be considered fits one of the standard paradigms
associated with studies of signal detection (see, e.g., Tanner & Swets,
1954; Swets, Tanner, & Birdsall, 1961; or Chapter 3, Vol. 1, by Luce).
The subject’s task in this experiment, like that of an observer monitoring a
radar screen, is to detect the presence of a visual signal which may occur
from time to time in one of several possible locations. Problems of interest
in connection with theories of signal detection arise when the signals are
faint enough so that the observer is unable to report them with complete
accuracy on all occasions. One empirical relation that we would want to
account for, in quantitative detail, is that between detection probabilities
and the relative frequencies with which signals occur in different locations.
Another is the improvement in detection rate that may occur over a series
of trials even when the observer receives no knowledge of results.

A possible way of accounting for the “practice effect” is suggested by
some rather obvious analogies between the detection experiment and the
probability learning experiment considered earlier: we expect that, when
the subject actually detects a signal (in terms of stimulus sampling theory,
samples the corresponding stimulus element), he will make the appropriate
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verbal report. Further, in the absence of any other information, this
detection of the signal may act as a reinforcing event, leading to condition-
ing of the verbal report to other cues in the situation which may have been
available for sampling before the occurrence of the signal. If so, and if
signals occur in some locations more often than in others, then on the basis
of the theory developed in earlier sections we should predict that the subject
will come to report the signal in the preferred location more frequently than
in others on trials when he fails to detect a signal and is forced to respond
to background cues. These notions are made more explicit in connection
with the following analysis of a visual recognition experiment reported by
Kinchla (1962).

Kinchla employed a forced-choice, visual-detection situation involving a
series of more than 900 discrete trials for each subject. Two areas were
outlined on a uniformly illuminated milk-glass screen. Each trial began
with an auditory signal, during which one of the following events occurred:

1. A fixed increment in radiant intensity occurred in area 1—a T-type
trial.

2. A fixed increment in radiant intensity occurred in area 2—a Ty-type
trial.

3. No change in the radiant character of either signal area occurred—a
T,-type trial.

Subjects were told that a change in illumination would occur in one of
the two areas on each trial. Following the auditory signal, the subject was
required to make either an A4;- or an A,-response (i.e., select one of two
keys placed below the signal area) to indicate the area he believed had
changed in brightness. The subject was given no information at the end of
the trial as to whether his response was correct. Thus, on a given trial, one
of three events occurred (73, Ty, T,), the subject made either an A;- or an
Ay-response, and a short time later the next trial began.

For a fixed signal intensity, the experimenter has the option of specifying
a schedule for presenting the T;-events. Kinchla selected a simple prob-
abilistic procedure in which Pr (TM) =¢& and &, + &, + &, =1. Two
groups of subjects were run. For Group 7, & + &, = 0.4 and &, = 0.2.
For Group II, & = &, = 0.2 and &, = 0.6. The purpose of Kinchla’s
study was to determine how these event schedules influenced the likelihood
of correct detections.

The model that we shall use to analyze the experiment combines two
quite distinct processes: a simple perceptual process defined with regard
to the signal events and a learning process associated with background
cues. The stimulus situation is conceptually represented in terms of two
sensory elements, s; and s,, corresponding to the two alternative signals,
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and a set, S, of elements associated with stimulus features common to all
trials. On every trial the subject is assumed to sample a single element from
the background set S, and he may or may not sample one of the sensory
elements. If the s, element is sampled, an 4, occurs; if s, is sampled, an
A, occurs. If neither sensory element is sampled, the subject makes the
response to which the background element is conditioned. Conditioning
of elements in S changes from trial to trial via a learning process.

The sampling of sensory elements depends on the trial type (7, Ty, Tp)
and is described by a simple probabilistic model. The learning process
associated with .S is assumed to be the multi-element pattern model pre-
sented in Sec. 2. Specifically, the assumptions of the model are embodied
in the following statements:

1. If T; (i = 1, 2) occurs, then sensory element s; will be sampled with
probability 4 (with probability 1 — & neither s, nor s, will be sampled).
If T, occurs, then neither s, nor s, will be sampled.

2. Exactly one element is sampled from S on every trial. Given the set
S of N elements, the probability of sampling a particular element is 1/N.

3. If 5; (i = 1, 2) is sampled on trial n, then with probability ¢’ the ele-
ment sampled from S on the trial becomes conditioned to 4, at the end of
trial n. If neither s; nor s, is sampled, then with probability ¢ the element
sampled from S becomes conditioned with equal likelihood to A4, or A4,
at the end of trial n.

4. If sensory element s, is sampled, then 4, will occur. If neither sensory
element is sampled, then the response to which the sampled element from
S is conditioned will occur.

If we let p,, denote the expected proportion of elements in S conditioned
to A; at the start of trial n, then (in terms of statements 1 and 4) we can
immediately write an expression for the likelihood of an A -response, given
a T-event, namely,

Pr (Al,n I Tl,n) =h + (1 - h)Pn’ (8861)
Pr(ds, | To) = h + (1 — h)(1 = p,,), (88b)
PI' (Al,n I TO,n) = pn (886)

The expression for p, can be obtained from Statements 2 and 3 by the
same methods used throughout Sec. 2 of this chapter (for a derivation of
this result, see Atkinson, 1963a):

1

Pn="Po — (P — pl)[l = %(a + b)Jn_ ,
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where a = &hc’ + (1 — h)(c/2) + &i(c/2), b = Ehc” + (1 — h)(c/2) +
Eoh(c/2), and p, = af(a + b). Division of the numerator and denominator
of p,, by c yields the expression

(L =&)L —h+hy) + &’

where ¢ = ¢’/c. Thus the asymptotic expression for p, does not depend
on the absolute values of ¢’ and ¢ but only on their ratio.

An inspection of Kinchla’s data indicates that the curves for Pr (4, | T;)
are extremely stable over the last 400 or so trials of the experiment; con-
sequently we shall view this portion of the data as asymptotic. Table 7

o0

Table 7 Predicted and Observed Asymptotic Response Probabilities
for Visual Detection Experiment

Group I Group II
Observed Predicted Observed Predicted
Pr(4,| Ty 0.645 0.645 0.558 0.565
Pr (A4, Ty) 0.643 0.645 0.730 0.724
Pr (4, | Tp) 0.494 0.500 0.388 0.388

presents the observed mean values of Pr (4, | T;) for the last 400 trials.
The corresponding asymptotic expressions are specified in terms of Egs.
88 and 89 and are simply

lim Pr (4, | Ty,,) = b + (1 — h)p,,, (90a)
lim Pr (A, | T,) = h + (1 — b)(1 — p.,), (90b)
lim Pr (4, , l Ton) = Peo- (90¢)

In order to generate asymptotic predictions, we need values for 4 and 4.
We first note by inspection of Eq. 89 that p.,, = } for Group I; in fact,
whenever &, = &,, we have p,, = 4. Hence taking the observed asymptotic
value for Pr (4, | T,) in Group I (i.e., 0.645) and setting it equal to /2 4
(1 — h)§ yields an estimate of & = 0.289. The background illumination
and the increment in radiant intensity are the same for both experimental
groups, and therefore we would require an estimate of 4 obtained from
Group I to be applicable to Group II. In orderto estimate v, we take the
observed asymptotic value of Pr (4, | T,) in Group II and set it equal to
the right side of Eq. 89 with A = 0.289, & = &, = 0.2, and &, = 0.6;
solving for p, we obtain ¢ = 2.8. Use of these estimates of 4 and y in
Egs. 89 and 90 yields the asymptotic predictions given in Table 7.
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Over-all, the equations give an excellent account of these particular
response measures. However, a more crucial test of the model is provided
by an analysis of the sequential data. To indicate the nature of the sequen-
tial predictions that can be obtained, consider the probability of an A,-
response on a T-trial, given the various trial types and responses that can
occur on the preceding trial, that is,

Pr (41,41 | Ty 14; 475 ),

where i = 1,2 and j =0, 1, 2. Explicit expressions for these quantities
can be derived from the axioms by the same methods used throughout
this chapter. To indicate their form, theoretical expressions for

hm Pr (Al,n+1 | Tl,n+1Az',nTj,7L)

N—> 0
are given, and, to simplify notation, they are written as Pr (4, | T44,T)).
The expressions for these quantities are as follows:

NX
Pr (4| Ta,1;) = & ‘Nh()lale‘) Py (o DT (915)
Pr (Al l T1A2T2) — hypoo + [h2 + (]\1]; h) 6,](1 _ poo) + (N 'I—VI)X, (910)
_(—mdp,  (N—DX

Pr (4, | LA, T,) = NI — 1) + N (91d)
Pr (4, | T1A,T,) = % + W—;{]—)—X , (91e)
Pr (A, | TyA,Ty) = f—v + @—‘N—l)ﬁ ©17)
where

y =ch+(1—¢),

y, =c + (1 - C,)h,

0 = (c/2h + [1 — (c/2)],

0" = (c/2) + [1 — (¢c/2)]h,

X=h+(1—hp,,
and

Y=h+(1—=n{1-p.).

It is interesting to note that the asymptotic expressions for Pr (4, , | T;,,.)
depend only on % and y, whereas the quantities in Eq. 91 are functions of
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all four parameters N, c, ¢’, and . Comparable sets of equations can be
written for Pr (4, | To4,T;) and Pr (4, | Ty4,T)).

The expressions in Eq. 91 are rather formidable, but numerical predic-
tions can be easily calculated once values for the parameters have been
obtained. Further, independent of the parameter values, certain relations
among the sequential probabilities can be specified. As an example of such

Table 8 Predicted and Observed Asymptotic Sequential Response
Probabilities in Visual-Detection Experiment

Group 1 Group II

Observed Predicted Observed Predicted

Pr (4, | Tod Ty 0.57 0.58 0.59 0.64
Pr (4, | TA4;,Ty) 0.65 0.69 0.70 0.76
Pr (4, | ToA,Ty) 0.71 0.71 0.79 0.77
Pr (4, | To4,Ty) 0.61 0.59 0.69 0.66
Pr (4, | T,A,T,) 0.54 0.59 0.68 0.66
Pr (4, | T,A,T,) 0.66 0.70 0.71 0.76
Pr (4 | Ty4,Ty) 0.73 0.71 0.70 0.65
Pr (4, | TyA,Ty) 0.62 0.59 0.59 0.52
Pr (4, | T,4,T5) 0.53 0.58 0.53 0.51
Pr (4, | T, A,Ty) 0.66 0.70 0.64 0.64
Pr (A4, | T,4,T,) 0.72 0.70 0.61 0.63
Pr (4, | T, 4,T,) 0.61 0.59 0.48 0.52
Pr (4, | ToA,T}) 0.38 0.40 0.47 0.49
Pr (4, | TyA,T)) 0.56 0.58 0.59 0.66
Pr (4, | T,A,T,) 0.64 0.60 0.67 0.68
Pr (4, | TyA,T,) 0.47 0.42 0.51 0.51
Pr (A, | TyA,Ty) 0.47 0.42 0.50 0.51
Pr (4, | Ty4,T,) 0.60 0.58 065 0.6

a relation, it can be shown that Pr (4, | 7,4,Ty) > Pr (4, | T,4,T,) for
any stimulus schedule and any set of parameter values. To see this, simply
subtract Eq. 91f from Eq. 91e and note that § > &'

In Table 8 the observed values for Pr (4, | T;A,T,) are presented as
reported by Kinchla. Estimates of these conditional probabilities were
computed for individual subjects, using the data over the last 400 trials;
the averages of these individual estimates are the quantities given in the
table. Each entry is based on 24 subjects.

In order to generate theoretical predictions for the observed entries in
Table 8, values for N, ¢, ¢’, and h are needed. Of course, estimates of A
and y = ¢'[c have already been made for this set of data, and therefore it is
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necessary only to estimate N and either c or ¢’. We obtain our estimates of
N and c by a least-squares method; that is, we select a value of N and ¢
(where ¢’ = cy) so that the sum of squared deviations between the 36
observed values in Table 8 and the corresponding theoretical quantities is
minimized. The theoretical quantities for Pr (4, ] T,4,T;) are com-
puted from Eq. 91; theoretical expressions for Pr (4, | T,4,T;) and
Pr (4, [ T,A4,T;) have not been presented here but are of the same general
form as those given in Eq. 91.
With this technique, estimates of the parameters are as follows:

N=423 ¢ =100
©2)
h =028 ¢ =0357.

The predictions corresponding to these parameter values are presented
in Table 8. When we note that only four of the possible 36 degrees of
freedom represented in Table 8 have been utilized in estimating parameters,
the close correspondence between theoretical and observed quantities
may be interpreted as giving considerable support to the assumptions of the
model.

A great deal of research needs to be done to explore the consequences
of this approach to signal detection. In terms of the experimental prob-
lem considered in this section, much progress can be made via differential
tests among alternative formulations of the model. For example, we
postulated a multi-element pattern model to describe the learning process
associated with background stimuli; it would be important to determine
whether other formulations of the learning process such as those developed
in Sec. 4 or those proposed by Bush and Mosteller (1955) would provide as
good or even better theoretical fits than the ones displayed in Tables 7
and 8. Also, it would be valuable to examine variations in the scheme for
sampling sensory elements along lines developed by Luce (1959, 1963) and
Restle (1961).

More generally, further development of the theory is required before
we can attempt to deal with the wide range of empirical phenomena en-
compassed in the approach to perception via decision theory proposed by
Swets, Tanner, and Birdsall (1961) and others. Some theoretical work
has been done by Atkinson (1963b) along the lines outlined in this section
to account for the ROC (receiver-operating-characteristic) curves that are
typically observed in detection studies and to specify the relation between
forced-choice and yes-no experiments. However, this work is still quite
tentative, and an evaluation of the approach will require extensive analyses
of the detailed sequential properties of psychophysical data.
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5.5 Multiple-Process Models

Analyses of certain behavioral situations have proved to require
formulations in terms of two or more distinguishable, though possibly
interdependent, learning processes that proceed simultaneously. For
some situations these separate processes may be directly observable;
for other situations we may find it advantageous to postulate processes that
are unobservable but that determine in some well-defined fashion the
sequence of observable behaviors. For example, in Restle’s (1955) treat-
ment of discrimination learning it is assumed that irrelevant stimuli may
become “adapted” over a period of time and thus be rendered nonfunc-
tional. Such an analysis entails a two-process system. One process has
to do with the conditioning of stimuli to responses, whereas the other
prescribes both the conditions under which cues become irrelevant and
the rate at which adaptation occurs.

Another application of multiple-process models arises with regard to
discrimination problems in which either a covert or a directly observable
orienting response is required. One process might describe how the
stimuli presented to the subject become conditioned to discriminative
responses. Another might specify the acquisition and extinction of various
orienting responses; these orienting responses would determine the specific
subset of the environment that the subject would perceive on a given trial.
For models dealing with this type of problem, see Atkinson (1958), Bush &
Mosteller (1951b), Bower (1959), and Wyckoff (1952).

As another example, consider a two-process scheme developed by
Atkinson (1960) to account for certain types of discrimination behavior.
This model makes use of the distinction, developed in Secs. 2 and 3,
between component models and pattern models and suggests that the
subject may (at any instant in time) perceive the stimulus situation either
as a unit pattern or as a collection of individual components. Thus two
perceptual states are defined: one in which the subject responds to the
pattern of stimulation and one in which he responds to the separate
components of the situation. Two learning processes are also defined.
One process specifies how the patterns and components become conditioned
to responses, and the second process describes the conditions under which
the subject shifts from one perceptual state to another. The control of the
second process is governed by the reinforcing schedule, the subject’s
sequence of responses, and by similarity of the discriminanda. In this
model neither the conditioning states nor the perceptual states are observ-
able; nevertheless, the behavior of the subject is rigorously defined in
terms of these hypothetical states.
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Models of the sort described are generally difficult to work with mathe-
matically and consequently have had only limited development and
analysis. It is for this reason that we select a particularly simple example
to illustrate the type of formulation that is possible. The example deals
with a discrimination-learning task investigated by Atkinson (1961) in
which observing responses are categorized and directly measured.

The experimental situation consists of a sequence of discrete trials.
Each trial is specified in terms of the following classifications:

Ty, Ty: Trial type. Each trial is either a T or a T,. The trial type is set
by the experimenter and determines in part the stimulus event
occurring on the trial.

Ry, Ry: Observing responses. On each trial the subject makes either an
R, or R,. The particular observing response determines in part
the stimulus event for that trial.

Sy, 8y, So1 Stimulus events. Following the observing response, one and
only one of these stimulus events (discriminative cues) occurs.
On a T-trial either s, or s, can occur; on a Ty-trial either s, or
s, can occur.!s

A,, A,: Discriminative responses. On each trial the subject makes either
an A4;- or A,-response to the presentation of a stimulus event.

O,, Oy: Trial outcome. Each trial is terminated with the occurrence of
one of these events. An O, indicates that 4, was the correct
response for that trial and O, indicates that 4, was correct.

The sequence of events on a trial is as follows: (1) The ready signal
occurs and the subject responds with R; or R,. (2) Following the observing
response, sy, Sy, Or 8, is presented. (3) To the onset of the stimulus event
the subject responds with either 4, or 4,. (4) The trial terminates with
either an O;- or O,-event.

To keep the analysis simple, we consider an experimenter-controlled
reinforcement schedule. On a T-trial either an O, occurs with probability
7, or an O, with probability 1 — 7;; on a T,-trial an O; occurs with
probability 7, or an O, with probability 1 — m,. The T)-trial occurs
with probability 8 and T, with probability 1 — 8. Thusa T;-O,-combina-
tion occurs with probability S, a T;-0,, with probability f(1 — ), and
SO on.

The particular stimulus event s; (i = 1, 2, b) that the experimenter

1% The subscript b has been used to denote the stimulus event that may occur on both
Ty~ and Ty-trials; the subscripts 1 and 2 denote stimulus events unique to 73- and
T,-trials, respectively.
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presents on any trial depends on the trial type (7} or T5) and the subject’s
observing response (R; or Ry).

1. If an R, is made, then
(a) with probability « the s;-event occurs on a 7Ty-trial and the s,-
event on a T,-trial;
(b) with probability 1 — « the s,-event occurs, regardless of the trial
type.
2. If an R, is made, then
(a) with probability « the s,-event occurs, regardless of the trial type;
(b) with probability 1 — « the s;-event occurs on a Ty-trial and s, on
a Ty-trial.

-

To clarify this procedure, consider the case in which « =1, m =1,
and 7, = 0. If the subject is to be correct on every trial, he must make
an A; on a Tj-trial and an 4, on a Ty-trial. However, the subject can
ascertain the trial type only by making the appropriate observing response;
that is, R; must be made in order to identify the trial type, for the
occurrence of R, always leads to the presentation of s,, regardless of
the trial type. Hence for perfect responding the subject must make R,
with probability 1 and then make 4, to s, or 4, to s,. The purpose of the
Atkinson study was to determine how variations in my, m,, and « would
affect both the observing responses and the discriminative responses.

Our analysis of this experimental procedure is based on the axioms
presented in Secs. 1 and 2. However, in order to apply the theory, we
must first identify the stimulus and reinforcing events in terms of the experi-
mental operations. The identification we offer seems quite natural to us
and is in accord with the formulations given in Secs. 1 and 2.

We assume that associated with the ready signal is a set S5 of pattern
elements. Each element in Sy, is conditioned to the R;- or the R,-observing
response; there are N such elements. At the start of each trial (i.e., with
the onset of the ready signal) an element is sampled from Sp, and the
subject makes the response to which the element is conditioned.

Associated with each stimulus event, s; (i = 1, 2, b), is a set, S, of
pattern elements; elements in S; are conditioned to the 4;- or the A,-
discriminative response. There are N such elements in each set, S;, and
for simplicity we assume that the sets are pairwise disjoint. When the
stimulus event s; occurs, one element is randomly sampled from S;, and
the subject makes the discriminative response to which the element is con-
ditioned.

Thus we have two types of learning processes: one defined on the set
Sy and the other defined on the sets Sy, S;, and S,. Once the reinforcing
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events have been specified for these processes, we can apply our axioms.
The interpretation of reinforcement for the discriminative-response
process is identical to that given in Sec. 2. If a pattern element is sampled
from set S; for i = 1, 2, b and is followed by an O; outcome, then with
probability ¢ the element becomes conditioned to A; and with prob-
ability 1 — ¢ the conditioning state of the sampled element remains
unchanged.

The conditioning process for the S}, set is somewhat more complex in
that the reinforcing events for the observing responses are assumed to be
subject-controlled. Specifically, if an element conditioned to R is sampled
from Sy and followed by either an 4,0;- or 4,0,-event, then the element
will remain conditioned to R;; however, if 4,0, or 4,0, occurs, then with
probability ¢’ the element will become conditioned to the other observing
response. Otherwise stated, if an element from Sy, elicits an observing
response that selects a stimulus event and, in turn, the stimulus event
elicits a correct discriminative response (i.e., 4,0, or 4,0,), then the
sampled element will remain conditioned to that observing response.
However, if the observing response selects a stimulus event that gives rise
to an incorrect discriminative response (i.e., 4,0, or 4,0,), then there will
be a decrement in the tendency to repeat that observing response on the
next trial.

Given the foregoing identification of events, we can now generate a
mathematical model for the experiment. To simplify the analysis, we let
N’ = N = 1; namely, we assume that there is one element in each of our
stimulus sets and consequently the single element is sampled with prob-
ability 1 whenever the set is available. With this restriction we may de-
scribe the conditioning state of a subject at the start of each trial by an
ordered four-tuple (ijkl):

1. The first member i is 1 or 2 and indicates whether the single element
of Sy is conditioned to R; or R,.

2. The second member j is 1 or 2 and indicates whether the single ele-
ment of S; is conditioned to 4; or A,.

3. The third member k is 1 or 2 and indicates whether the element of
S, is conditioned to 4; or A,.

4. The fourth member /is 1 or 2 and indicates whether the element of
S, is conditioned to A4; or A,.

Thus, if the subject is in state (ijk/), he will make the R; observing re-
sponse; then, to s;, 5,, or sp, he will make discriminative response A;, A4y,
or A,, respectively.

From our assumptions it follows that the sequence of random variables
that take the subject states {ijk/) as values is a 16-state Markov chain.
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Fig. 10. Branching process, starting in state (1122), for a single trial in the two-process
discrimination-learning model.

Figure 10 displays the possible transitions that can occur when the subject
is in state (1122 on trial n. To clarify this tree, let us trace out the top
branch. An R, is elicited with probability 1, and with probability fm
a T,-trial with an O;-outcome will occur; further, given an R;-response
on a Ty-trial, there is probability « that the s;-stimulus event will occur;
the onset of the s;-event elicits a correct response, hence no change occurs
in the conditioning state of any of the stimulus patterns. Now consider
the next set of branches: an R, occurs and we have a T;0;-trial; with
probability 1 — o the s,-stimulus will be presented and an 4, will occur;
the A4,-response is incorrect (in that it is followed by an O;-event); hence
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with probability ¢ the element of set S, will become conditioned to 4,
and with independent probability ¢’ the element of set S will become
conditioned to the alternative observing response, namely R,.

From this tree we obtain probabilities corresponding to the (1122)
row in the transition matrix. For example, the probability of going from
{1122» to {2112> is simply fmy(1 — a)ec’ + (1 — B)my(l — a)ec’; that is,
the sum over branches 2 and 15. An inspection of the transition matrix
yields important results. For example, if « = 1, m; = 1, and 7, = 0, then
states (1112} and (1122} are absorbing, hence in the limit Pr (R, ,,) = 1,
Pr(4,,|Ty,) =1,and Pr(d,,|T,,) = 1.

As before, let 17}, denote the probability of being in state {ijk/) on trial
n; when the limit exists, let u;,;, = 11,1Lngo u{%. Experimentally, we are

interested in evaluating the following theoretical predictions:

. (n) (n) (n)
Pr (Ry,,) = uitn + u1112 + ”1121 + Uiqpe

+ u1211 + “1212 + ”1221 + “1222: (93a)
Pr(Ay, | Ty) = il + wifle + uith + ullle

+ afugay + uype + uiiy + ulsl

+ (1 - [“Yqu + ”Yzqz + “;711;1 + ”;gz (93b)
Pr (Al,n l Ty,,) = u{ﬂl + ”igl gfh + ”2211

(n) (n) (n) (n)
+ afuster + Uizer + Ustia + Uggral
(n) (n) (n) (n)
+ (1 — o)[ustie + Uszie + Usion + Usppr], (93¢)

Pr(Ry,, N 4;,) = ”iﬁ1 + oc”1121 + (1 - “(175{2
+ Jafuitoe + uith
+ (1 — 3 (uife + uizh), (93d)

Pr(R,, N4,,) = ugtly + oaullys + (1 — ouiiy
+ 3(1 — 9)usfas + uginl
+ [1 — 31 — O)[ughls + umyl. (93e)

The first equation gives the probability of an R;-response. The second
and third equations give the probability of an 4,-response on 7;- and T,-
trials, respectively. Finally, the last two equations present the probability
of the joint occurrence of each observing response with an A;-response.

In the experiment reported by Atkinson (1961) six groups with 40
subjects in each group were run. For all groups m; = 0.9 and § = 0.5.
The groups differed with respect to the value of « and m,. For Groups
I to III the value of @ = 1; and for Groups IV to VI « = 0.75. For
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Groups I and IV, 7, = 0.9; for Il and V, 7, = 0.5; and for Groups III
and VI, m, = 0.1. The design can be described by the following array:

1.0

0.75

Ty

09 05 0.1
I II III

Iv. vV VI

Given these values of my, 7, «, and [, the 16-state Markov chain is
irreducible and aperiodic. Thus lim u{f}; = u,, exists and can be ob-
tained by solving the appropriate set of 16 linear equations (see Eq. 16).

Table9 Predicted and Observed Asymptotic Response Probabilities
in Observing Response Experiment

Group I

Group II

Group III

Pred. Obs. SD

Pred. Obs. SD

Pred.

Obs.

SD

Pr(4,|T) 090 094 0014
Pr(4,|Ty) 090 094 0014
Pr (R,) 0.50 0.45 0.279
Pr(R, N A) 045 043 0266
Pr(R, N A;) 045 047 0.293

0.81 0.85 0.164
0.59 0.61 0.134
0.55 0.59 0.279
039 0.42 0.226
0.31 0.31 0.232

0.79
0.21
0.73
0.37
0.13

0.79
0.23
0.70
0.36
0.16

0.158
0.182
0.285
0.164
0.161

Group IV

Group V

Group VI

Pred. Obs. SD

Pred. Obs. SD

Pred.

Obs.

SD

Pr(4,|T) 090 093 0.063
Pr(4,|T,) 090 095 0.014
Pr (R, 0.49 0.50 0.257
Pr(R, N 4;) 044 047 0241
Pr(Ry N4, 0.46 047 0.247

0.80 0.82 0.114
0.60 0.68 0.114
0.52 0.53 0.305
0.35 0.38 0.219
0.34 0.36 0.272

0.73
0.27
0.63
0.32
0.19

0.73
0.25
0.72
0.36
0.13

0.138
0.138
0.263
0.138
0.168

The values predicted by the model are given in Table 9 for the case in
which ¢ = ¢’. Values for the u,;,;’s were computed and then combined by
Eq. 93 to predict the response probabilities. By presenting a single value for
each theoretical quantity in the table we imply that these predictions are
independent of ¢ and ¢’. Actually, this is not always the case. However,
for the schedules employed in this experiment the dependency of these
asymptotic predictions on ¢ and ¢’ is virtually negligible. For ¢ = ¢,
ranging over the interval from 0.0001 to 1.0, the predicted values given in
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Table 9 are affected in only the third or fourth decimal place; it is for this
reason that we present theoretical values to only two decimal places.

In view of these comments it should be clear that the predictions in
Table 9 are based solely on the experimental parameter values. Conse-
quently, differences between subjects (that may be represented by inter-
subject variability in ¢ and ¢") do not substantially affect these predictions.

In the Atkinson study 400 trials were run and the response proportions
appear to have reached a fairly stable level over the second half of the
experiment. Consequently, the proportions computed over the final
block of 160 trials were used as estimates of asymptotic quantities. Table
9 presents the mean and standard deviation of the 40 observed proportions
obtained under each experimental condition.

Despite the fact that these gross asymptotic predictions hold up quite
well, it is obvious that some of the predictions from the model will not be
confirmed. The difficulty with the one-element assumption is that the
fundamental theory laid down by the axioms of Sec. 2 is completely deter-
ministic in many respects. For example, when N’ = 1, we have

Pr (Rl,n+1 l Ol,nAl,an,n) =1,

namely, if an R, occurs on trial # and is reinforced (i.e., followed by an
A,04-event), then R, will recur with probability 1 on trial n + 1. This
prediction is, of course, a consequence of the assumption that we have but
one element in set S, which necessarily is sampled on every trial. If we
assume more than one element, the deterministic features of the model
no longer hold, and such sequential statistics become functions of c,
¢’, N, and N’'. Unfortunately, for elaborate experimental procedures of
the sort described in this section the multi-element case leads to com-
plicated mathematical processes for which it is extremely difficult to carry
out computations. Thus the generality of the multi-element assumption
may often be offset by the difficulty involved in making predictions.

Naturally, it is usually preferable to choose from the available models
the one that best fits the data, but in the present state of psychological
knowledge no single model is clearly superior to all others in every facet
of analysis. The one-element assumption, despite some of its erroneous
features, may prove to be a valuable instrument for the rapid exploration of
a wide variety of complex phenomena. For most of the cases we have
examined the predicted mean response probabilities are usually independ-
ent of (or only slightly dependent on) the number of elements assumed.
Thus the one-element assumption may be viewed as a simple device for
computing the grosser predictions of the general theory.

For exploratory work in complex situations, then, we recommend using
the one-element model because of the greater difficulty of computations
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for the multi-element models. In advocating this approach, we are taking
a methodological position with which some scientists do not agree. Our
position is in contrast to one that asserts that a model should be discarded
once it is clear that certain of its predictions are in error. We do not take
it to be the principal goal (or even, in many cases, an important goal) of
theory construction to provide models for particular experimental situa-
tions. The assumptions of stimulus sampling theory are intended to
describe processes or relationships that are common to a wide variety of
learning situations but with no implication that behavior in these situa-
tions is a function solely of the variables represented in the theory. As
we have attempted to illustrate by means of numerous examples, the for-
mulation of a model within this framework for a particular experiment is a
matter of selecting the relevant assumptions, or axioms, of the general
theory and interpreting them in terms of the conditions of the experiment.
How much of the variance in a set of data can be accounted for by a model
depends jointly on the adequacy of the theoretical assumptions and on the
extent to which it has been possible to realize experimentally the boundary
conditions envisaged in the theory, thereby minimizing the effects of
variables not represented. In our view a model, in application to a given
experiment, is not to be classified as “correct” or “incorrect”; rather, the
degree to which it accounts for the data may provide evidence tending
either to support or to cast doubt on the theory from which it was derived.
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